U.S. Department of Transportation

Highway Safety Performance - 1991

Fatal and Injury Accident Rates on
Public Roads in the United States

September 1993

Prepared by the Offices of Highway Safety and Highway Information Management

Publication Number FHWA-SA-94-032

A Report of the Secretary of Transportation to the United States Congress pursuant to Section 207 of the Surface Transportation Assistance Act of 1982 (P.L. 97-424)
n

HIGHWAY SAFETY PERFORMANCE - 1991

Fatal and Injury Accident Rates on Public Roads in the United States

A Report of the Secretary of Transportation to the United States Congress

Pursuant to
Section 207 of the Surface Transportation Assistance Act of 1982 (P.L. 97-424)

September 1993

Prepared by the Offices of Highway Safety and Highway Information Management

U.S. DEPARTMENT OF TRANSPORTATION
Federal Highway Administration
Washington, D.C. 20590

TABLE OF CONTENTS

EXECUTIVE SUMMARY vii
SECTION I Introduction 1
A. Purpose of Report 1
B. Terminology 1
C. Highway Safety Performance in 1991 4
D. National Trends 7
E. Comparison of State Statistics 13
SECTION II Vehicle Mileage Rates 15
SECTION III Other Rates 49
A. Highway Mileage 49
B. Population 49
C. Licensed Drivers 49
D. Registered Vehicles 49
SECTION IV Puerto Rico 55
SECTION V Relationship of Fatality Rates to Travel Density 57
SECTION VI State Fatality Rate Trends 79
SECTION VII Summary 91
References 93

TABLES

Table 1 U.S. Vehicle Mile Rates by Highway System - 1991 5
Table 2 State Accident Summary - 1991 6
Table 3 Fatal Accidents by State and Highway System - 1991 16-23 (Tables 3-A through 3-H)
3-A: \quad Federal-Aid Interstate System 16
3-B: \quad Federal-Aid Primary System - Noninterstate 17
3-C: Federal-Aid Urban System 18
3-D: \quad Federal-Aid Secondary System 19
3-E: \quad Nonfederal-Aid Arterial System 20
3-F: \quad Nonfederal-Aid Collector System 21
3-G: \quad Nonfederal-Aid Local System 22
3-H: Total Rural and Urban Systems 23
Table 4 Nonfatal Injury Accidents by State and Highway System - 1991 24-31
(Tables 4-A through 4-H)
4-A: \quad Federal-Aid Interstate System 24
4-B: \quad Federal-Aid Primary System - Noninterstate 25
4-C Federal-Aid Urban System 26
4-D: Federal-Aid Secondary System 27
4-E: \quad Nonfederal-Aid Arterial System 28
4-F: \quad Nonfederal-Aid Collector System 29
4-G: Nonfederal-Aid Local System 30
4-H: \quad Total Rural and Urban Systems 31
Table $5 \quad$ Fatalities by State and Highway System - 1991 32-39
(Tables 5-A through 5-H)
5-A: \quad Federal-Aid Interstate System 32
5-B: \quad Federal-Aid Primary System - Noninterstate 33
5-C: \quad Federal-Aid Urban System 34
5-D: Federal-Aid Secondary System 35
5-E: \quad Nonfederal-Aid Arterial System 36
5-F: \quad Nonfederal-Aid Collector System 37
5-G: \quad Nonfederal-Aid Local System 38
5-H: Total Rural and Urban Systems 39
Table 6 Nonfatally Injured Persons by State and Highway System - 1991 40-47
(Tables 6-A through 6-H)
6-A: \quad Federal-Aid Interstate System 40
6-B: \quad Federal-Aid Primary System - Noninterstate 41
6-C: \quad Federal-Aid Urban System 42
6-D: Federal-Aid Secondary System 43
6-E: \quad Nonfederal-Aid Arterial System 44
6-F: \quad Nonfederal-Aid Collector System 45
6-G: \quad Nonfederal-Aid Local System 46
6-H: Total Rural and Urban Systems 47
Table $7 \quad$ U.S. Highway-Mile Rates by Highway System - 1991 50
Table 8 Fatal and Injury Accident Data Related to Population-1991 51
Table 9 Fatal and Injury Accident Data Related to Licensed Drivers - 1991 52
Table 10 Fatal and Injury Accident Data Related to Vehicle Registrations - 1991 53
Table 11 Fatal and Injury Accidents in Puerto Rico - 1991 55
FIGURES
Figure 1 U.S. Motor Vehicle Traffic Fatality Rates (1925-1991) 8
Figure 2 U.S. Fatality Rates for Interstate and Other Highway Systems (1967-1991) 9
Figure 3 U.S. Nonfatal Injury Rates for Interstate and Other Highway Systems (1967-1991) 10
Figure 4 U.S. Fatality Rates by Highway System (1978-1991) 11
Figure $5 \quad$ U.S. Nonfatal Injury Rates by Highway System (1978-1991) 12
Figure 6 Relationship Between Fatality Rates and Travel Density 14
Figure 7 State Fatality Rates by Highway System 60-78
(Figures 7-A1 through 7-F2b)
7-A1: Provisional Rate-Density Relationship - All Highways (1987-1990) 60
7-A2: \quad Fatality Rate by State - All Highways (1991) 61
7-B1: \quad Provisional Rate-Density Relationship - Rural and Urban Highways (1987-1990) 62
7-B2a: Fatality Rate by State - All Rural Highways (1991) 63
7-B2b: Fatality Rate by State - All Urban Highways (1991) 64
7-C1a: Provisional Rate-Density Relationship - Interstate System (1987-1990) 65
7-C1b: Provisional Rate-Density Relationship - Rural Interstate System (1987-1990) 66
7-C1c: Provisional Rate-Density Relationship - Urban Interstate System (1987-1990) 67
7-C2a: \quad Fatality Rate by State - Rural Interstate Highways (1991) 68
7-C2b: Fatality Rate by State - Urban Interstate Highways (1991) 69
7-D1: \quad Provisional Rate-Density Relationship - Other Federal-Aid Primary Highways (1987-1990) 70
7-D2a: Fatality Rate by State - Other Rural Federal-Aid Primary Highways (1991) 71
7-D2b: Fatality Rate by State - Other Urban Federal-Aid Primary Highways (1991) 72
7-E1: \quad Provisional Rate-Density Relationship - Federal-Aid Secondary and Urban Systems (1987-1990) 73
7-E2a: Fatality Rate by State - Federal-Aid Secondary Highways (1991) 74
7-E2b: \quad Fatality Rate by State - Federal-Aid Urban System Highways (1991) 75
7-F1: \quad Provisional Rate-Density Relationship - Nonfederal-Aid Highways (1987-1990) 76
7-F2a: Fatality Rate by State - Rural Nonfederal-Aid Highways (1991) 77
7-F2b: Fatality Rate by State - Urban Nonfederal-Aid Highways 11991) 78
Figure 8 State Fatality Rates (1987-1991) 80

EXECUTIVE SUMMARY

This report was prepared pursuant to Section 207 of the Surface Transportation Assistance Act of 1982 (P.L. 97-424) which reads as follows:

> Sec. 207. The Secretary of Transportation shall prepare, publish, and submit to Congress not later than December 31 of each calendar year beginning after December 31, 1982, a report on the highway safety performance of each State in the preceding calendar year. Such report shall provide data on highway fatalities and injuries and motor vehicle accidents involving fatalities and injuries and travel in urban areas of each State for each system of highways and in rural areas of such State for each system of highways. Such report shall be in such form and contain such other information on highway accidents as will permit an evaluation and comparison of highway safety performance of the States. For purposes of this section (1) the systems of highways in a State are the Federal-Aid primary system, the Federal-Aid secondary system, the Federal-Aid urban system, and the Interstate System (as such terms are defined in section 101 of Title 23, United States Code) and the other highways in such State which are not on the Federal-Aid system, and (2) the terms "State," "rural areas," and "urban area" have the meaning such terms have under such section 101.

This report is a continuation of the data series published from 1967 to 1981 under the title, "Fatal and Injury Accident Rates on Federal-Aid and Other Highway Systems." It is the tenth report prepared as required by Section 207 of the Surface Transportation Assistance Act of 1982 (P.L. 97-424). The statistical data in the report are submitted by the States through the Federal Highway Administration's Highway Performance Monitoring System. The text of the report is primarily technical detail and background information which may assist those who analyze and interpret statistical data.

The traffic accident statistics for 1991 show a decrease of about 3,000 fatalities from 1990. A disproportionate share of these fatalities occurred on Federal-aid Secondary and non-Federal-aid rural highways. The overall fatality rate per 100 million vehicle miles of travel was 1.91, which was lower than the record low of 2.07 set in 1990.

From a rate of more than 18 fatalities per 100 million vehicle miles in the mid1920's, the average rate has gone downward more than 3 percent per year to a record low rate of 1.91 .

Fatality rates on the Interstate System are less than haif of that for other highway systems, even though a little more than one-fifth of all highway travel in the United States occurs on the Interstate System.

SECTION I-INTRODUCTION

A. Purpose of Report

In response to the congressional direction given in the Surface Transportation Assistance Act of 1982, this report provides motor vehicle traffic accident data which may be used, together with other relevant information, in evaluating and comparing the highway safety performance of the States. It is not the purpose of this report to present either a detailed analysis of the data or a completed evaluation or comparison of State highway safety performance. The text of the report is primarily technical detail and background information which may assist those who analyze or interpret the statistical tables and graphs.

B. Terminology

Definitions serve to describe terms which are not in common use and to clarify the intended meaning of familiar terms which may be ambiguous. Interpretation of laws is greatly facilitated by the use of carefully defined terminology. Similarly, the interpretation of statistics is dependent upon an understanding of the terminology used in the collection and processing of the data. Such an understanding is particularly important when statistics from two or more sources are combined or compared. For this reason, an explanation of pertinent terminology precedes the statistical data in this report.

The two primary sources for the definitions which follow are Section 101 of Title 23 of the United States Code and the Manual on Classification of Motor Vehicle Traffic Accidents (ANSI D16.1-1989). The accident data in this report have been collected and processed by thousands of persons in State and local agencies and deviations from the standard definitions are not unusual. Most of the deviations are relatively minor, but some are not. Users of accident statistics should be constantly alert to the fact that statistical differences may reflect differences in terminology rather than differences in accident experience.

Terms used in this report are defined as follows:
A motor vehicle traffic accident is an accident involving a motor vehicle in use within the right-of-way or other boundaries of a trafficway open for the use of the public.

An injury is any bodily harm received by a person in a motor vehicle traffic accident.

A fatal injury is any injury that results in death.
A nonfatal injury is any injury other than a fatal injury.

A fatal accident is a motor vehicle traffic accident resulting in one or more fatal injuries.

A nonfatal accident is a motor vehicle traffic accident that results in one or more injuries, but no fatal injuries.

A fatality is the death of any person who suffers a fatal injury. For its statistics on motor vehicle traffic fatalities, the Department of Transportation uses a 30 -day counting rule, including only those deaths which occur within 30 days of the fatal injury. Approximately 2 percent of traffic fatalities occur later.

A nonfatally injured person is one who suffers a nonfatal injury in either a fatal accident or a nonfatal injury accident.

Vehicle miles are the miles of travel by all types of motor vehicles, as determined by the State highway departments on the basis of actual traffic counts and established estimating procedures.

The fatal accident rate, nonfatal injury accident rate, fatality rate, and nonfatal injury rate are, respectively, the number of fatal accidents, nonfatal injury accidents, fatalities, and nonfatally injured persons per 100 million vehicle miles of travel.

An urban highway is any road or street within the boundaries of an urban area. An urban area is an area including and adjacent to a municipality or urban place with 5,000 or more population. The boundaries of urban areas are fixed by the State highway departments, subject to the approval of the Federal Highway Administration, for purposes of the Federal-Aid highway program.

A rural highway is any road or street which is not an urban highway.
Travel density is the average number of vehicle miles driven on a section of highway each day divided by the length of the section in miles. It is expressed as a number of vehicles and may be referred to as average daily traffic (ADT).

The provisional rate-density relationship is the relationship between fatality rates and average daily traffic. It is based on data for the 4 -year period preceding the calendar year for which detailed data are reported. It is labelled "provisional" to make it clear that it is to be used as a guide rather than a standard. A provisional rate-density relationship may be described graphically or mathematically by a rate-density curve.

A provisional range for a given period of time is based on a provisional rate-density relationship and the volume of travel. The provisional range indicates--for an appropriate volume of travel-the amount of deviation from fatality rates on a rate-density curve which might be expected if the deviation were random.

The characteristics of the functional classes of highways referred to in this compilation of statistical data are briefly described as follows:

Arterial highways serve major traffic movements or major traffic corridors. While they may provide access to abutting land, their primary function is to serve traffic moving through the area.

Local highways are those roads and streets whose principal function is to provide direct access to abutting land.

Collector highways are those highways which link local highways to arterial highways.

The characteristics of the several Federal-Aid highway systems referred to in this report are briefly described as follows:

Federal-Aid Primary, Secondary, and Urban highway systems are those for which Federal-Aid highway matching funds may be spent by the State.

The Federal-Aid Primary system is a system of connected main roads important to interstate, statewide, and regional travel, consisting of rural arterial routes and their extensions into or through urban areas.

The Interstate System is a part of the Federal-Aid Primary system. It is a system of freeways (i.e., expressways with fully controlled access) connecting and serving the principal cities of the United States.

The Federal-Aid Secondary system consists of rural major collector routes.
The Federal-Aid Urban system consists of urban arterial and collector routes, exclusive of urban extensions of the Federal-Aid Primary system.

The fatality statistics in this report differ somewhat from those reported elsewhere. For its motor vehicle traffic fatality statistics, the Department of Transportation (DOT) uses a 30-day counting rule. ${ }^{1}$ Under this rule, deaths resulting from an

[^0]accident are counted only if they occur within 30 days of the accident. Traffic fatalities are listed by the time and place of the fatal accident. Similar statistics published by the National Center for Health Statistics (NCHS) are listed by the time of death and place of residence of the deceased, using a 12 -month counting rule.

Another difference in the reporting of fatalities which result from motor vehicle accidents is the treatment of deaths resulting from nontraffic accidents. Examples of motor vehicle nontraffic accidents are those which occur in the driveways of private homes or in other locations outside the rights-of-way or other boundaries of roads which are open for public use. Annual motor vehicle fatality figures for the United States reported by NCHS and the National Safety Council (NSC) generally include about 1,000 nontraffic fatalities--deaths which are not included in DOT reports.

The number of nonfatally injured persons is also counted in a variety of ways. In this publication the number of injured persons is the number reported by police. The NSC, for comparability with injuries from industrial and other accidents, reports the number of persons disabled beyond the day of the accident. Another approach is taken in the National Health Survey by the Bureau of Census. In the National Health Survey, the estimated number of injuries is based on responses to household interviews. National Health Survey injury figures tend to be about twice as high as those reported by NSC. The police-reported figures used in this publication are midway between the others.

C. Highway Safety Performance in 1991

The traffic accident statistics for 1991 show a decrease of about 3,000 fatalities from 1990. The overall fatality rate per 100 million vehicle miles of travel was 1.91, which was lower than the record low of 2.07 set in 1990 .

Table 1 contains travel and accident data by highway system for the United States. It is a summary of the detailed data contained in Tables 2 through 6. The data permit comparison of numbers and rates (per 100 million vehicle miles) for accidents and casualties on Federal-aid and other highway systems. Fatality rates on the Interstate System are less than half of that for other highway systems, even though a little more than one-fifth of all highway travel in the United States occurs on the Interstate System.

Table 2 contains a summary of travel and accident data by state. In addition to data which are presented in greater detail in Tables 3 through 6, Table 2 includes pedestrian data. Pedestrian fatality rates dropped from 0.30 (per 100 million vehicle miles) in 1990 to 0.27 in 1991. The number of pedestrians injured, fatally or nonfatally, are reported for each state together with pedestrian injury rates.

TABLE 1. U.S. VEHICLE MILE RATES BY HIGHWAY SYSTEM - 1991¹ ${ }^{11}$

	hiohhay system	HIOHMAYMILES $2 /$	$\begin{gathered} \text { VEHICLE } \\ \text { (MILESIONS) } \end{gathered}$	DAILY VEMICLE MILES per hile	FATAL ACCIDENTS		NONFATAL INJURY ACCIDENTS 4/		FATALIties		NONFRTBLLY INJURED PERSONS i/	
					number	RATE 3/	number	RATE 3/	number	RATE 3/	nuhber	ARTE 3/
	INTERSTATE (ARTERIALI RURAL URBRN TOTAL	$\begin{array}{r} 33,677 \\ 11.603 \\ 45.200 \\ \hline \end{array}$	$\begin{aligned} & 205.011 \\ & 285 ; 325 \\ & 490 ; 336 \end{aligned}$	$\begin{array}{r} 18.678 \\ 67.372 \\ 29.668 \\ \hline \end{array}$	$\begin{aligned} & 2.139 \\ & 1.729 \\ & 3.868 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.04 \\ & 0.61 \\ & 0.79 \\ & \hline \end{aligned}$	$\begin{array}{r} 43.806 \\ 117.131 \\ 160.937 \\ \hline \end{array}$	$\begin{aligned} & 21.37 \\ & 11.05 \\ & 32.82 \\ & \hline \end{aligned}$	$\begin{array}{r} 2.564 \\ 1.908 \\ 4.472 \\ \hline \end{array}$	$\begin{aligned} & 1.25 \\ & 0.67 \\ & 0.91 \\ & \hline \end{aligned}$	$\begin{array}{r} 72.939 \\ \mathbf{1 8 2 . 5 6 1} \\ \mathbf{2 5 5 . 5 0 0} \\ \hline \end{array}$	35.58 68.98 52.11
	\qquad	$\begin{array}{r} 222.794 \\ 34.261 \\ 257.055 \\ \hline \end{array}$	$\begin{array}{r} 330,295 \\ 277,823 \\ 800.118 \\ \hline \end{array}$	$\begin{array}{r}4.062 \\ 22.218 \\ 6.481 \\ \hline\end{array}$	$\begin{array}{r}7.756 \\ 9.550 \\ 11.286 \\ \hline\end{array}$	2.35 1.27 1.86	$\begin{aligned} & 192.423 \\ & 297.725 \\ & 40.148 \\ & \hline \end{aligned}$	$\begin{array}{r}58.26 \\ 107.16 \\ 80.80 \\ \hline\end{array}$	$\begin{array}{r}9.248 \\ 3.869 \\ 13.117 \\ \hline\end{array}$	2.80 1.39 2.15	$\begin{aligned} & 329.346 \\ & 486 ; 099 \\ & 864.445 \\ & \hline \end{aligned}$	$\begin{array}{r} 99.41 \\ 174.97 \\ 179.99 \\ \hline \end{array}$
	```FEDERAL-AID URBAN ARTERIAL cOllector TOTAL (ALL URBAN!```	$\begin{array}{r} 92.829 \\ 55.258 \\ 147.887 \\ \hline \end{array}$		$\begin{array}{r} 11.915 \\ 4.068 \\ 8,983 \\ \hline \end{array}$	6.005   1.010   7.015	1.49   1.23   1.45	$\begin{aligned} & 809,879 \\ & 118 ; 340 \\ & 728.219 \end{aligned}$	$\begin{array}{r} 161.40 \\ 144.23 \\ 150.19 \\ \hline \end{array}$	6.480   10.077   7.557	1.81 1.31 1.58 1.88	$\begin{array}{r} 948.306 \\ 175.095 \\ 1.123 .401 \\ \hline \end{array}$	$\begin{aligned} & 235.41 \\ & 213.40 \\ & 231.69 \\ & \hline \end{aligned}$
	$\begin{gathered} \text { FEDERAL-AID SECONOARY } \\ \text { (COLECTORI } \\ \text { TDTAL IALL RURRLI } \\ \hline \end{gathered}$	400.315	185.986	1.273	5.363	2.08	163.230	87.77	6.120	3.29	256.351	137.85
	NOW-FEDERAL-AIO   ARTERAL   RURAL   URBRN   UROTAL   TOTAL	$\begin{array}{r} 4,790 \\ 7.968 \\ 12.756 \\ \hline \end{array}$	$\begin{array}{r} 4.554 \\ 28.977 \\ 31.531 \\ \hline \end{array}$	$\begin{aligned} & 2.605 \\ & 9.278 \\ & 8.772 \\ & \hline \end{aligned}$	$\begin{array}{r} 98 \\ 237 \\ \mathbf{3 3 5} \\ \hline \end{array}$	2.15   0.88   1.06	$\begin{array}{r} 1.792 \\ 21: 049 \\ 22.841 \\ \hline \end{array}$	$\begin{aligned} & 39.35 \\ & 78.03 \\ & 72.44 \\ & \hline \end{aligned}$	122   251   373	2.68 0.93 1.98	$\begin{array}{r} 3,189 \\ 34.496 \\ 37.865 \\ \hline \end{array}$	$\begin{array}{r} 70.03 \\ 127.87 \\ 119.52 \\ \hline \end{array}$
	$\qquad$	$\begin{array}{r} 330.933 \\ 22.025 \\ 352.958 \\ \hline \end{array}$	59,641 25,222 84,863	$\begin{array}{r}494 \\ 3.137 \\ 659 \\ \hline\end{array}$	$\begin{aligned} & 1.721 \\ & 1.850 \\ & \hline \end{aligned}$	2.89   0.73   2.25	$\begin{array}{r} 63.427 \\ 25.742 \\ 85.169 \\ \hline \end{array}$	$\begin{aligned} & 106.35 \\ & 102.06 \\ & 105.07 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.914 \\ & 2.115 \\ & \hline 2.115 \\ & \hline \end{aligned}$	3.21 0.80 2.49	$\begin{array}{r} 94.780 \\ 31.783 \\ 126.563 \end{array}$	158.92   126.01   149.14
	$\begin{gathered} \text { NON-fEDERAL-AIO LOCAL } \\ \text { RURAL } \\ \text { URAM } \\ \text { TOTAL } \\ \hline \end{gathered}$	$\begin{array}{r} 2.146 .928 \\ 528.122 \\ 2.879 .048 \\ \hline \end{array}$	98.154 188.365 286.519	125   981   294	4.070   3.052   7.122	4.15   1.62   2.49	177.037   3779787   555.824	180.37 201.09 193.99	4.445   3.263   7.708	4.53   1.73   2.89	$\begin{aligned} & 262.989 \\ & 557.477 \\ & 820.985 \end{aligned}$	$\begin{array}{r} 267.85 \\ 295.96 \\ 286.33 \\ \hline \end{array}$
		$\begin{array}{r} 656,788 \\ 193.751 \\ 650.537 \\ \hline \end{array}$	$\begin{array}{r} 721.272 \\ 1.048: 029 \\ 1.769 .301 \\ \hline \end{array}$	3.009 14.8200 5.699	$\begin{aligned} & 15.258 \\ & 12.274 \\ & 27.532 \\ & \hline \end{aligned}$	2.12   1.17   1.56	$\begin{array}{r} 399.459 \\ 1.143 .075 \\ 1.542 .594 \\ \hline \end{array}$	$\begin{array}{r}55.38 \\ 109.07 \\ 87.18 \\ \hline\end{array}$	17.932 13.334 31.266	2.49   1.27   1.77	$\begin{array}{r} 657.696 \\ 1.792 .061 \\ 2.449 .697 \\ \hline \end{array}$	$\begin{array}{r}91.18 \\ 170.99 \\ 198.46 \\ \hline\end{array}$
	$\qquad$	$\begin{array}{r} 2.402 .649 \\ 558.113 \\ 3.039 .762 \\ \hline \end{array}$	162.949   240.564   402.913	$\begin{array}{r}179 \\ 1.185 \\ \hline 363 \\ \hline\end{array}$	5,889 3.474 3,363	3.63   1.44   2.32	$\begin{aligned} & 242.256 \\ & 425757 \\ & 67.834 \\ & \hline \end{aligned}$	149.22   176.91   165.75	$\begin{array}{r}6,481 \\ 3,715 \\ 10.198 \\ \hline\end{array}$	3.99   1.54   2.53	$\begin{aligned} & 360,877 \\ & 623776 \\ & 984.633 \\ & \hline \end{aligned}$	$\begin{array}{r} 222.28 \\ 259.29 \\ 244.38 \\ \hline \end{array}$
		$\begin{array}{r} 3.105,750 \\ 738,261 \\ 3.644,019 \\ \hline \end{array}$	$\begin{array}{r}678.610 \\ 1.003 .868 \\ \mathbf{1 . 6 8 1 . 8 7 8} \\ \hline\end{array}$	$\begin{array}{r}599 \\ \hline 1.723 \\ 1.199 \\ \hline\end{array}$	$\begin{array}{r} 19.008 \\ 14.019 \\ \mathbf{3 3 . 0 2 7} \\ \hline \end{array}$	2.80 1.40 1.96	$\begin{array}{r} 597.909 \\ 1.451 .522 \\ 2.049 .431 \\ \hline \end{array}$	$\begin{array}{r}88.11 \\ 144.68 \\ 121.85 \\ \hline\end{array}$	$\begin{aligned} & 21.049 \\ & 15,141 \\ & 36.990 \end{aligned}$	3.22   1.51   2.20	$\begin{array}{r} 945.574 \\ \mathbf{2 . 2 3 . 2 5 6} \\ \mathbf{3 . 1 7 8 . 8 5 0} \\ \hline \end{array}$	$\begin{array}{r} 139.34 .34 \\ 222.60 \\ 189.00 \\ \hline \end{array}$
	$\begin{gathered} \text { TOTAL } \\ \text { RURAL } \\ \text { URRAM } \\ \text { TOTAL } \\ \hline \end{gathered}$	$\begin{array}{r} 3.139 .435 \\ 749.864 \\ 3.889 .299 \\ \hline \end{array}$	$\begin{array}{r} 683.621 \\ 1.287 .593 \\ 2.172 .214 \\ \hline \end{array}$	771 4.708 $\mathbf{4} .530$	$\begin{aligned} & 21.147 \\ & 15.448 \\ & 36.895 \\ & \hline \end{aligned}$	2.39 1.22 1.70	$\begin{array}{r}641.715 \\ 1.560 .653 \\ 2.210 .368 \\ \hline\end{array}$	$\begin{array}{r}72.62 \\ 121.73 \\ 101.78 \\ \hline\end{array}$	$\begin{array}{r} 24,413 \\ 17.049 \\ 41.462 \\ \hline \end{array}$	2.76 1.32 1.91	$\begin{aligned} & 1.018 .513 \\ & 2.415 .817 \\ & 3.454 .390 \\ & \hline \end{aligned}$	$\begin{aligned} & 155.27 \\ & 187.48 \\ & 158.10 \\ & \hline \end{aligned}$
	I/ U.s. ESTLIAATES EXCLUDE THE COMMONWERLTH af PUERTO RICO and THE TERITORIES OF RHERICAN SAHOA. GUAM. VIROIN ISLPNDS ANO NORTHERN hartinas.   2' MILEAGE aND TRAVEL DATA aRE FROM THE HIGHUAY PERFORMANCE MOHI TORINO SYSTER THPMS FOR 1991. FEDERAL-GIO HIOHMAY MILEAOE IS FROM hars universe oata amo vehicle hiles of travel are from the hphs hreamide sumhary tables. Federal hiohmay moministration estimates here					MADE FOR MAJOR hiohnay cateoories hhere complete functional or FEDERAL-AID SYSTEM DATA HERE NOT REPORTEE.   3) RATES RRE PER 100 HILLION VEHICLE MILES.    for tennessee.						

TABLE 2. STATE ACCIDENT SUMMARY - 1991

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{8TAFE} \& \multirow[t]{2}{*}{HLOPHAY} \& \multirow[t]{2}{*}{\[
\begin{gathered}
\text { YEHICLE } \\
\text { (MLLEGOMS) }
\end{gathered}
\]} \& \multicolumn{2}{|l|}{FATAL. Accidenta} \& \multicolumn{2}{|l|}{NOMFATAL
INYAY
ACCIUENTS} \& \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { FRTALITIES } \\
\hline \text { TOTALI } \\
\hline
\end{gathered}
\]} \& \multicolumn{2}{|l|}{} \& \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { FATALLY } \\
\text { FEASPTD } \\
\text { PEDESTRIRNS }
\end{gathered}
\]} \& \multicolumn{2}{|l|}{\[
\begin{aligned}
\& \text { MONFATALLY } \\
\& \text { INJUED } \\
\& \text { PEDESTRIANS }
\end{aligned}
\]} \\
\hline \& \& \& Mumber \& rate \(1 /\) \& unber \& RATE \(1 /\) \& munaer \& RATE \(1 / 1\) \& number \& RATE \(1 /\) \& number \& Rate in \& number \& Rate 11 \\
\hline \begin{tabular}{l}
ALABAMA ALASKA PRIZONR
ARKANSPS \\

\end{tabular} \& \[
\begin{gathered}
90.709 \\
\hline 19.54 \\
55.529 \\
77.179
\end{gathered}
\] \&  \& \[
\begin{aligned}
\& 980 \\
\& 980 \\
\& 7727 \\
\& 530
\end{aligned}
\] \& \[
\begin{aligned}
\& 2.28 \\
\& 9.28 \\
\& 2.20 \\
\& 2.98 \\
\& 2.42
\end{aligned}
\] \& \[
\begin{aligned}
\& 27.999 \\
\& 3.829 \\
\& 34.231 \\
\& 17.099
\end{aligned}
\] \& \[
\begin{array}{r}
85.22 \\
108.52 \\
\hline 980.50 \\
50.80
\end{array}
\] \& \[
\begin{array}{r}
1.112 \\
101 \\
816 \\
808 \\
\hline
\end{array}
\] \& \[
\begin{aligned}
\& 2.59 \\
\& 8.51 \\
\& 2.54 \\
\& 2.79 \\
\& 2.79
\end{aligned}
\] \&  \& \[
\begin{aligned}
\& 98.87 \\
\& 157 \\
\& 159 \\
\& 159.98 \\
\& 93.14
\end{aligned}
\] \& \[
\begin{array}{r}
102 \\
177 \\
117 \\
59
\end{array}
\] \& \[
\begin{aligned}
\& 0.24 \\
\& 0.42 \\
\& 0.33 \\
\& 0.24 \\
\& \hline
\end{aligned}
\] \& \[
\begin{array}{r}
560 \\
89 \\
1.389 \\
542 \\
\hline
\end{array}
\] \& \begin{tabular}{l}
1.30 \\
2.9 \\
3.9 \\
3.47 \\
2.4 \\
\hline
\end{tabular} \\
\hline CALIFORMIP COLORADO COMNECTICDT oelamare \&  \& \[
\begin{array}{r}
257.978 \\
2774 \\
28.748 \\
8.724 \\
8.721
\end{array}
\] \& \[
\begin{array}{r}
4.191 \\
480 \\
291 \\
890
\end{array}
\] \& \[
\begin{aligned}
\& 1.62 \\
\& 1.73 \\
\& 1.000 \\
\& 1.34 \\
\& 1
\end{aligned}
\] \& \[
\begin{array}{r}
224.004 \\
25.300 \\
28.518 \\
4.914
\end{array}
\] \& \[
\begin{array}{r}
86.93 \\
91 \\
90722 \\
107.10 \\
73.11 \\
\hline
\end{array}
\] \& \[
\begin{array}{r}
4.685 \\
\hline 543 \\
310 \\
102
\end{array}
\] \& \[
\begin{aligned}
\& 1.82 \\
\& 1.96 \\
\& 1.166 \\
\& 1.52
\end{aligned}
\] \& \[
\begin{array}{r}
350,068 \\
39.402 \\
1.482 \\
7.649
\end{array}
\] \& \[
\begin{aligned}
\& 135.70 \\
\& 138.72 \\
\& 155.78 \\
\& 11878
\end{aligned}
\] \& \[
\begin{gathered}
683 \\
48 \\
50 \\
16
\end{gathered}
\] \& \[
\begin{aligned}
\& 0.34 \\
\& 0.11 \\
\& 0.19 \\
\& 0.24 \\
\& \hline
\end{aligned}
\] \& \[
\begin{array}{r}
17.386 \\
1.352 \\
1.359 \\
273
\end{array}
\] \& \begin{tabular}{l}
8.79 \\
3.74 \\
5.10 \\
4.06 \\
4.06 \\
\hline
\end{tabular} \\
\hline  \& \[
\begin{aligned}
\& 1.102 \\
\& 109.974 \\
\& 110.482 \\
\& 1.102
\end{aligned}
\] \& \[
\begin{array}{r}
3 \cdot 430 \\
13.483 \\
73.605 \\
6.143
\end{array}
\] \& \[
\begin{array}{r}
80 \\
\mathbf{2 . 8 1 8} \\
.828 \\
.826
\end{array}
\] \& \[
\begin{aligned}
\& 1.75 \\
\& 1.55 \\
\& 1.88 \\
\& 1.48
\end{aligned}
\] \& \[
\begin{array}{r}
9.502 \\
120.013 \\
61.274 \\
8.825
\end{array}
\] \& \[
\begin{array}{r}
277.03 \\
105.75 \\
83.93 \\
105.92 \\
\hline
\end{array}
\] \& \(\begin{array}{r}63 \\ \\ 2.464 \\ 1.369 \\ 135 \\ \hline\end{array}\) \& \[
\begin{aligned}
\& 1.84 \\
\& 2.17 \\
\& 1.90 \\
\& 1.66
\end{aligned}
\] \& \begin{tabular}{l}
19.513 \\
19898989 \\
97.089 \\
12.424 \\
\hline 18.4
\end{tabular} \& \[
\begin{aligned}
\& 394.84 \\
\& 171.73 \\
\& 132.92
\end{aligned}
\]
\[
152.57
\] \& \[
\begin{aligned}
\& 24 \\
\& 493 \\
\& \hline 91 \\
\& \hline 18
\end{aligned}
\] \& \[
\begin{aligned}
\& 0.70 \\
\& 0.43 \\
\& 0.22 \\
\& 0.32
\end{aligned}
\] \& \(\begin{array}{r}1.257 \\ 7.969 \\ 2.361 \\ 2600 \\ \hline\end{array}\) \& \begin{tabular}{c}
36.65 \\
7.02 \\
9.26 \\
7.37 \\
\hline
\end{tabular} \\
\hline \[
\begin{aligned}
\& \text { IOAHO } \\
\& \text { 1LINOIS } \\
\& \text { HONANP }
\end{aligned}
\] \&  \&  \& \[
\begin{array}{r}
221 \\
4.289 \\
403 \\
423 \\
\hline
\end{array}
\] \& \[
\begin{aligned}
\& \hline 2.14 \\
\& 1.51 \\
\& 1.86 \\
\& 1.64 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& 8 \cdot 490 \\
\& 99 ; 948 \\
\& \hline 77.922 \\
\& 20.034 \\
\& \hline
\end{aligned}
\] \&  \& \[
\begin{array}{r}
284 \\
\begin{array}{r}
2.448 \\
1.022 \\
1.028 \\
488
\end{array}
\end{array}
\] \& \[
\begin{aligned}
\& 2.56 \\
\& 1.69 \\
\& 1.680 \\
\& 2.12
\end{aligned}
\] \& \[
\begin{array}{r}
10.438 \\
145.610 \\
69.680 \\
29.175 \\
\hline
\end{array}
\] \& \[
\begin{aligned}
\& 101-14 \\
\& 170.44 \\
\& 127 \\
\& 126.87 \\
\& \hline 126.74
\end{aligned}
\] \& \[
\begin{gathered}
17 \\
220 \\
88 \\
35
\end{gathered}
\] \& \[
\begin{aligned}
\& 0.18 \\
\& 0.828 \\
\& 0.16 \\
\& 0.15 \\
\& \hline
\end{aligned}
\] \&  \& \(\begin{array}{r}2.00 \\ \begin{array}{r}1.25 \\ 3.32 \\ 3.32 \\ \hline\end{array}{ }^{\text {a }} \text { ( } \\ \hline\end{array}\) \\
\hline Kमмรดร KERTUCKY LOUISIAMA HRINE \& \begin{tabular}{l}
133.487 \\
\({ }_{56} 5.598\) \\
22.444
\end{tabular} \& \[
\begin{aligned}
\& 23.108 \\
\& 35.213 \\
\& 34.710 \\
\& 11.849 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& 350 \\
\& 7220 \\
\& 777 \\
\& \hline 180
\end{aligned}
\] \& \[
\begin{aligned}
\& 1.51 \\
\& 2.05 \\
\& 2.04 \\
\& 1.24 \\
\& 1.52
\end{aligned}
\] \& \[
\begin{aligned}
\& \begin{array}{l}
3.037 \\
32.055 \\
40.553 \\
10.840 \\
10.840
\end{array}
\end{aligned}
\] \& \[
\begin{array}{r}
82.11 \\
93.59 \\
118.78 \\
91.48
\end{array}
\] \& \[
\begin{aligned}
\& 409 \\
\& \hline 826 \\
\& 856 \\
\& 806 \\
\& 204
\end{aligned}
\] \& \[
\begin{aligned}
\& 1.76 \\
\& 2.85 \\
\& 2.45 \\
\& 1.72 \\
\& 1.72
\end{aligned}
\] \& \[
\begin{aligned}
\& 28.667 \\
\& 50.707 \\
\& 57.755 \\
\& 15.699
\end{aligned}
\] \& \[
\begin{aligned}
\& 123.64 \\
\& 144.06 \\
\& 195.20 \\
\& 132.49
\end{aligned}
\] \& \[
\begin{array}{r}
20 \\
52 \\
\mathbf{5 2 8} \\
\hline 98
\end{array}
\] \& \[
\begin{aligned}
\& 0.09 \\
\& 0.15 \\
\& 0.40 \\
\& 0.08
\end{aligned}
\] \&  \& \begin{tabular}{l}
4.94 \\
9.78 \\
9.88 \\
9.84 \\
9.24 \\
\hline
\end{tabular} \\
\hline MARYLAMD HASSACHUSETTS HCHIDAM 21 hinmesota \& \[
\begin{array}{r}
28.984 \\
94.923 \\
117.545 \\
129.438
\end{array}
\] \& \[
\begin{aligned}
\& 8.949 \\
\& 46.959 \\
\& \hline 18.957 \\
\& 89.254 \\
\& 39.254
\end{aligned}
\] \& \[
\begin{array}{r}
629 \\
510 \\
.0275 \\
\hline 469 \\
\hline
\end{array}
\] \& \[
\begin{aligned}
\& 1.52 \\
\& 1.10 \\
\& 1.56 \\
\& 1.18
\end{aligned}
\] \& \[
29.890
\] \& \[
\begin{array}{r}
108.37 \\
143.25 \\
108 \\
73.68 \\
73.68
\end{array}
\] \& \[
\begin{array}{r}
694 \\
552 \\
\mathbf{5} 408 \\
\hline 531 \\
\hline
\end{array}
\] \& \[
\begin{aligned}
\& 1.68 \\
\& 1.19 \\
\& 1.72 \\
\& 1.35
\end{aligned}
\] \& \[
\begin{array}{r}
74.414 \\
84 \\
141.415 \\
18.415
\end{array}
\] \& \[
\begin{aligned}
\& 179.97 \\
\& 180.51 \\
\& 172.59 \\
\& 108.90
\end{aligned}
\] \& \[
\begin{aligned}
\& 140 \\
\& 106 \\
\& 177 \\
\& 60
\end{aligned}
\] \& \[
\begin{aligned}
\& 0.34 \\
\& 0.29 \\
\& 0.22 \\
\& 0.15 \\
\& 0.15
\end{aligned}
\] \& 3.444
3.028
3.792
1.393 \& \begin{tabular}{l}
8.33 \\
8.51 \\
4.63 \\
3.41 \\
\hline
\end{tabular} \\
\hline hississipmi Missouni hontana nebraska \& \[
\begin{array}{r}
72.590 \\
721055 \\
7.797 \\
92.888 \\
98
\end{array}
\] \&  \& \[
\begin{aligned}
\& 593 \\
\& 998 \\
\& 972 \\
\& 242
\end{aligned}
\] \&  \& \[
\begin{aligned}
\& \begin{array}{l}
4.178 \\
43.964 \\
5.514 \\
15.287
\end{array}
\end{aligned}
\] \& \[
\begin{array}{r}
56.94 \\
86.14 \\
86.92 \\
\hline 109.46
\end{array}
\] \& \[
\begin{array}{r}
699 \\
1.011 \\
200 \\
275
\end{array}
\] \& \begin{tabular}{l}
2.84 \\
1.98 \\
1.41 \\
1.95 \\
\hline
\end{tabular} \& \begin{tabular}{l}
28.935 \\
87.895 \\
8.849 \\
22.888 \\
\hline
\end{tabular} \& \[
\begin{aligned}
\& 109.19 \\
\& 132.78 \\
\& 101.62 \\
\& 182.98 \\
\& \hline 82
\end{aligned}
\] \& \[
\begin{aligned}
\& 51 \\
\& 73 \\
\& 14 \\
\& 18
\end{aligned}
\] \& 0.28
0
0.114
0.17
0.17 \&  \& 2.69
4.65
2.19
4.29
4 \\
\hline \begin{tabular}{l}
NEYADA \\
NEH HAMPSHIRE \\
NEH JERSEY \\
NEM MEXICE
\end{tabular} \&  \& \[
\begin{aligned}
\& \begin{array}{l}
10.510 \\
9.595 \\
59.295 \\
\hline 9.999 \\
\hline 6.973
\end{array}
\end{aligned}
\] \& \[
\begin{aligned}
\& 288 \\
\& \hline 134 \\
\& 738 \\
\& 422
\end{aligned}
\] \& \[
\begin{aligned}
\& 2.47 \\
\& 1.55 \\
\& 1.54 \\
\& 2.52 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& \begin{array}{l}
12.022 .020 \\
6.510 \\
91.301 \\
15: 937
\end{array}
\end{aligned}
\] \& \[
\begin{array}{r}
114.39 \\
65.55 \\
159.59 \\
95.09
\end{array}
\] \& \begin{tabular}{l}
297 \\
143 \\
794 \\
469 \\
\hline
\end{tabular} \& \[
\begin{aligned}
\& 2.83 \\
\& 1.44 \\
\& 1.42 \\
\& 2.80 \\
\& 2.80
\end{aligned}
\] \& \[
\begin{array}{r}
19.322 \\
99.650 \\
14.198 \\
26.107
\end{array}
\] \& \[
\begin{aligned}
\& 174.33 \\
\& 87.13 \\
\& 2431 \\
\& 249.21 \\
\& 149.69
\end{aligned}
\] \& \[
\begin{array}{r}
40 \\
14 \\
179 \\
179
\end{array}
\] \& 0.38
0.14
0.100
0.54
0.54
0.4 \& \[
\begin{array}{r}
606 \\
8-509 \\
\hline 587
\end{array}
\] \& \(\begin{array}{r}5.77 \\ 0.00 \\ 10.97 \\ 3.50 \\ \hline 19.80\end{array}\) \\
\hline heu York NORTH CRROL INA MORTH BRKOTA
OMIO \& \[
\begin{array}{r}
111.442 \\
9.144 \\
.86 .625 \\
13.865
\end{array}
\] \& \[
\begin{array}{r}
107.861 \\
64.883 \\
5 ; 951
\end{array}
\]
\[
93.002
\] \& \[
\begin{aligned}
\& 1,028 \\
\& 1.213 \\
\& 1,461 \\
\& 1.451
\end{aligned}
\] \& \begin{tabular}{l}
1.70 \\
1.97 \\
1.58 \\
1.58 \\
\hline 10
\end{tabular} \& \[
\begin{array}{r}
189.310 \\
70.291 \\
93 \\
124.332 \\
124.548 \\
\hline
\end{array}
\] \& \[
\begin{aligned}
\& 175.84 \\
\& 108.33 \\
\& 55.99 \\
\& 133.92
\end{aligned}
\] \& \[
\begin{aligned}
\& 2.009 \\
\& 1.369 \\
\& 94 \\
\& 1.635
\end{aligned}
\] \& \[
\begin{aligned}
\& 1.87 \\
\& 2.11 \\
\& 1.58 \\
\& 1.78 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& 200.292 \\
\& 114.200 \\
\& 410.935 \\
\& 21.430
\end{aligned}
\] \&  \& \[
\begin{aligned}
\& 488 \\
\& 189 \\
\& 186 \\
\& 189
\end{aligned}
\] \& \[
\begin{aligned}
\& 0.45 \\
\& 0.29 \\
\& 0.10 \\
\& 0.16 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& 21.458 \\
\& 2.874 \\
\& 410 \\
\& 4,889 \\
\& \hline
\end{aligned}
\] \& \begin{tabular}{c}
19.93 \\
4.12 \\
1.85 \\
5.26 \\
5.8 \\
\hline
\end{tabular} \\
\hline окцавона OREOM PENASYLVAMIG
RHODE ISLAND \& \[
\begin{array}{r}
112.281 \\
98.302 \\
118.689 \\
8.820
\end{array}
\] \& 34.240
\(25: 762\)
87.262
7.152
7 \& \[
\begin{array}{r}
550 \\
424 \\
1.510 \\
\hline 84
\end{array}
\] \& \[
\begin{aligned}
\& 1: 81 \\
\& 1: 55 \\
\& 1: 79 \\
\& 1.77
\end{aligned}
\] \& \[
\begin{array}{r}
24.093 \\
20.035 \\
84.960 \\
8.893
\end{array}
\] \& \[
\begin{aligned}
\& 70.37 \\
\& 7.77 \\
\& 97.30 \\
\& 98.38
\end{aligned}
\] \&  \& \[
\begin{aligned}
\& 1.90 \\
\& 1.880 \\
\& 1.89 \\
\& 1.23 \\
\& \hline
\end{aligned}
\] \& \[
\begin{array}{r}
38.259 \\
31.141 \\
130.448 \\
10.501
\end{array}
\] \& \[
\begin{aligned}
\& 111.72 \\
\& 120.818 \\
\& 149.75 \\
\& 148.83 \\
\& \hline
\end{aligned}
\] \& \[
\begin{array}{r}
50 \\
53 \\
231 \\
231 \\
\hline 12
\end{array}
\] \& 0.15
0.21
0.28
0.17

0.15 \& \[
$$
\begin{array}{r}
828 \\
700 \\
\mathbf{7 . 2 9 3} \\
\mathbf{2 9 8} \\
\hline 199
\end{array}
$$

\] \& | 1.83 |
| :--- |
| 2.72 |
| 7.20 |
| 1.99 | <br>

\hline SOUTH CAROLIMA SOUTM DARDI TEKRES \& $$
\begin{array}{r}
84.082 \\
89.237 \\
84.852 \\
293.509
\end{array}
$$ \& \[

$$
\begin{array}{r}
34.458 \\
8.711 \\
478.287 \\
158.758
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
789 \\
130 \\
1.002 \\
2.697 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 2.29 \\
& 1.994 \\
& 2.12 \\
& 1.70 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
28.854 \\
48.830 \\
46.795 \\
\hline 161.470
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
83.74 \\
71.97 \\
99.80 \\
101.71
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
890 \\
143 \\
1.113 \\
3.078
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 2.58 \\
& 2.19 \\
& 2.35 \\
& 1.94 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
47.472 \\
7,310 \\
72,254 \\
269,430
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 197.78 \\
& 109.93 \\
& 152.96 \\
& 165.93
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
125 \\
10 \\
101 \\
511
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 0.36 \\
& 0.15 \\
& 0.15 \\
& 0.21 \\
& 0.32
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
1.164 \\
165 \\
1.950 \\
5.718 \\
\hline
\end{array}
$$

\] \& | 3.38 |
| :--- |
| 2.46 |
| 4.13 |
| 9.35 | <br>


\hline | UTAH |
| :--- |
| VERHONT yiroinia MASHINOTOM | \&  \&  \& \[

$$
\begin{array}{r}
229 \\
100 \\
840 \\
802 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 1.49 \\
& 1.70 \\
& 1.30 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 13.762 \\
& 37 ; 939 \\
& 47.991 \\
& 49.048
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
69.42 \\
52.49 \\
70.08 \\
\hline 05.60
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 271 \\
& \hline 10 \\
& 942 \\
& 882
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.76 \\
& 1.87 \\
& 1.54 \\
& 1.47 \\
& \hline
\end{aligned}
$$

\] \&  \& \[

$$
\begin{aligned}
& 197.55 \\
& 0257 \\
& 118.097 \\
& 155.02 \\
& 155
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
30 \\
111 \\
75
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 0.19 \\
& 0.15 \\
& 0.18 \\
& 0.18
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.659 \\
& 124 \\
& 1.860 \\
& \hline
\end{aligned}
$$
\] \& $\begin{array}{r}10.78 \\ 3.82 \\ 3.04 \\ 4.02 \\ \hline\end{array}$ <br>

\hline hest virolnia hisconsin urohino \& $$
\begin{array}{r}
34,773 \\
119772 \\
36.897 \\
\hline
\end{array}
$$ \&  \& \[

$$
\begin{aligned}
& 972 \\
& 817 \\
& 8104 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 2.32 \\
& 1: 49 \\
& 1.73 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
17.944 \\
40.918 \\
3.945 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
108.22 \\
90.01 \\
55.77 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 4.5 \\
& \hline 97 \\
& \hline 92 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 2.59 \\
& 2.75 \\
& 2.03 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
26.556 \\
60.555 \\
5.259 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
165.71 \\
132.71 \\
1327 \\
87.01 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
33 \\
80 \\
\hline 2 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 0.21 \\
& 0.13 \\
& 0.03 \\
& \hline
\end{aligned}
$$

\] \& $\begin{array}{r}592 \\ 2.140 \\ 108 \\ \hline\end{array}$ \& | 3.89 |
| :--- |
| 4.71 |
| 1.77 | <br>

\hline total \& 3,889.299 \& 2.172 .214 \& 96.095 \& 1.70 \& 2.210.368 \& 101.76 \& 41.482 \& 1.91 \& 3.434.330 \& 156.10 \& 5.797 \& 0.27 \& 127.986 \& 5.89 <br>
\hline
\end{tabular}

[^1]
## D. National Trends

From a rate of more than 18 fatalities per 100 million vehicle miles in the mid-1920's, the average rate has gone down more than 3 percent per year to a record low rate of 1.91 in 1991.

Figures 2 and 3 graphically illustrate national traffic fatality and nonfatal injury rate trends from 1967 through 1991 for Interstate and other highway systems. Fatality rate trends were gradually downward for all systems through 1986. Although these trends were interrupted by relatively stable periods following a sharp drop in 1974, the downward movement resumed in 1981. In 1987 and 1988, fatality rates for rural Interstates rose, and at the same time the fatality rates for urban roads off the Interstate system declined. In 1991, roads off the Interstate system in urban and rural areas reached an all-time low fatality rate of 1.51 and 3.22 , respectively. The rural Interstate fatality rate declined again in 1991 to 1.25. The urban Interstate fatality rate also declined in 1991 to 0.67. Trends for reported nonfatal injury rates were also generally downward during the 1967-1991 period.

Figures 4 and 5 illustrate national fatality and nonfatal injury rate trends from 1978 through 1991 by highway system. In the mid-1970's, non-Interstate Federal-aid highway systems were realigned by adopting functional classifications as the basis for assignment of highways to each system. As a result of these changes, trend data are only available for a short period for most systems. The time period covered in Figures 4 and 5 corresponds largely with the period of relative trend stability which is apparent in Figures 2 and 3.

The 1967 through 1981 data used in Figures 3 through 5 were published in the annual Federal Highway Administration reports, "Fatal and Injury Accidents on Federal-Aid and Other Highway Systems."

FIGURE 1. U.S. MOTOR VEHICLE TRAFFIC FATALITY RATES (1925-1991)


FIGURE 2. U.S. FATALITY RATES FOR INTERSTATE AND OTHER HIGHWAY SYSTEMS (1967-1991)


YEAR

- All Highways
+ Interstate Rural * Interstate Urban
Non-Interstate Rural * Non-Interstate Urban

FIGURE 3. U.S. NONFATAL INJURY RATES FOR INTERSTATE AND OTHER HIGHWAY SYSTEMS (1967-1991)


YEAR


FIGURE 4. U.S. FATALITY RATES BY HIGHWAY SYSTEM (1978-1991)


FIGURE 5. U.S. NONFATAL INJURY RATES BY HIGHWAY SYSTEM (1978-1991)


## E. Comparison of State Statistics

This report was prepared to help meet the need for statistical data to be used in comparing and evaluating the highway safety performance of the States. Those who use the report should be aware of some of the strengths and weaknesses of the data. For the most part, the data have been submitted by State highway agencies through FHWA's Highway Performance Monitoring System. Accident data originate in police accident reporting systems, while the collection of travel and highway inventory data originates in the highway departments. The quality of the reported data is generally high but varies somewhat within the States.

Because all States report accident and related data to FHWA through a single system, reported data are generally consistent. Differences due to variations in data collection procedures are usually marginal. Occasionally variations may be large enough to obscure or exaggerate real differences among the States. Evaluation of the highway safety performance of each State should include consideration of its record over a period of time as well as comparisons with other States.

One useful device for comparing fatality rates is the rate-density curve. Other things being equal, fatality rates in terms of fatalities per 100 million vehicle miles tend to be highest where the travel density--the ratio of vehicle miles to highway miles--is low. The general shape of the rate-density curve--concave upward and sloping downward to the right--is shown in Figure 6. Rate-density curves in the 1976 "Highway Safety Needs Study," a DOT report to Congress, were used to illustrate the fatality rate reduction resulting from the adoption of safer design standards for Interstate highways. Fatality rates are normally higher on lightly traveled segments of the Interstate System than on segments where traffic is heavier. Large and sparsely populated States will normally have higher fatality rates than States with relatively high concentrations of people and traffic.

When basic rate-density relationships are disregarded, evaluation of State highway safety performance is most often based on comparison of State fatality rates with national fatality rates. This tends to focus undue attention on sparsely populated States and encourages complacency in States which have high population and travel densities. A low-density State might have highly effective speed limit enforcement and highway safety improvement programs, for example, but still have fatality rates substantially above those of a high-density State with ineffective safety programs. In Sections V and VI of this report, rate-density relationships are used as a basis for fatality rate comparisons among States, by system, and within States, by year, respectively.


Figure 6. RELATIONSHIP BETWEEN FATALITY RATES AND TRAVEL DENSITY

## SECTION II - VEHICLE MILEAGE RATES

The most commonly used measures of highway safety are fatality rates based on vehicle mileage. Such rates have been published and widely publicized for over 50 years by the National Safety Council. While other measures are sometimes more appropriate for comparisons and analysis, vehicle mileage rates serve as useful indices. In the tables which follow, rates per 100 million vehicle miles are listed by State and highway system for fatal accidents, nonfatal injury accidents, fatalities, and nonfatally injured persons (Tables 3 through 6, respectively).

The rates shown in these tables are uniformly carried out to two decimal places. This apparent precision surpasses the degree of accuracy of much of the data on which the computed rates are based. Collection and classification of information about miles of highway, vehicle miles of travel, and motor vehicle traffic accidents is a highly complex undertaking. Because of this complexity and the necessity of subjective judgments at many points in the process, the computed rates should be regarded as approximations, not as precise measurements.

STATE	RUARL					state	URBAN				
	HIPHMAYWILES	$\begin{gathered} \text { VEHICLE } \\ \text { MILES } \\ \text { MILLIONS } \end{gathered}$	$\begin{aligned} & \text { DAILY } \\ & \text { VEHICLE } \\ & \text { MILES } \\ & \text { PER HILE } \end{aligned}$	FRTAL ACCIDENTS			HIOHAAY MILES	$\begin{gathered} \text { VEHICLE } \\ \text { MILES } \\ \text { (MILLIONS) } \end{gathered}$	$\begin{aligned} & \text { DAILY } \\ & \text { VEHICLE } \\ & \text { MILES } \\ & \text { PER MILE } \end{aligned}$	fathl ACCIDENTS	
				NUMBER	RATE 1/					NUMBER	RRTE 1/
ALABAMA		4.515	19.208		1.17	ALABAMA	255	$\begin{array}{r}3.737 \\ \hline 430\end{array}$	40.150	27	0.72
ALASKKA	1.048	4.701	1.850	20 101	2.85 2.01	ALASKA ARIZONA	51 130	.430 2.939	23.100 61.939	16	0.93
ARIZONA	1.039	5.014 2.830	13.221 18.505	101	2.01	ARIZONA RRKANSAS	130 123	2.939 1.780	61.939 39.848	17	0.54
RRKANSAS	1.415	14.830	18.505 28.567	217	1.88	CALIFORNIA	984	61.191	142.530	284	0.55
COLORADO	. 793	3,604	12.451	56	1.55	COLORADO	150	3.561	65.041	27	0.76
CONNECTICUT	109	1.421	35.717	10	0.70	CONNECTICUT	232	8.394	75.508	24	0.38
DELAHARE	-					DELAWARE	41	972	64.952	7	0.72
DIST. OF COL.			24			DIST. OF COL.	12	1437	99.792	05	0.76
FLORIDA	1.022	9.115	24.435	104	1.14	Florion	472	11.1039	73.936	62	0.62
georgia	873	9.013	28.285 55.890	57	0.63 1.96	georgia HAMAII	378	10.039 1.386	99.928	5	0.36
MAHAII IDAHD	535	1.543	7.931	25	1.62	IDAHO	74	598	22,140	5	0.84
ILLINOIS	1.415	7.723	14.953	58	0.75	ILLINOIS	547	14.374	71.994	85	0.59
INDIANA	863	6.943	22.042	51	0.73	INDIANA	274	5.104	51.035	23	0.45
104月	644	3.307	14,069	22	0.67	10 HA	138	$\underline{2.379}$	27.389	11	0.54
KANSAS	712	2.550	9,812	13	0.51	KENTUCKY	184	3.647	54.303	26	0.71
LOUISIRNA	657	4.481	18,686	59	1.32	LOUISIANA	187	3.559	52.143	28	0.79
MAINE	313	1.694	14.828	18	1.06	MRINE	53	449	23.210	3	0.67
MARYLAND	241	3.179	36.139	21	0.66	MARYLAND	240	8.432	96.256	36	0.43
MASSACHUSETTS	170	2.098	33,811	8	0.38	MASSACHUSETTS	397	10.417	71.888	44	0.43
MICHIGRN	783	5.782	20.231	30	0.52	MICHIGAN	455	11.413	68.722	10	0.20
MINNESOTA	681	2.994	12.045	20	0.67	MINNESOTA	230	5.060 1.292	60.274 26.546	$\stackrel{1}{9}$	0.70
MISSISSIPPI	660	2.777	13.586	33	1.19	MISSISSIPPI	124 336	8.293	65,908	66	0.82
MISSDuri	841	5.570 1.798	18.145 4.301	62 32	1.118	MISSOURI	47	- 166	9.676	5	3.01
MONTANA	1.144	1.798 1.946	12,009	17	0.87	NEBRASKA	37	640	47.390	4	0.62
NEVADA	499	1.572	8,631	44	2.80	NEVADA	46	1.001	59.619	13	1.30
NEH HRMPSHIRE	180	1.363	20.746	15	1.10	NEW HAMPSHIRE	44	6	4.843	64	0.78
NEH JERSEY	191	2.190	45.801	7	0.32	NEW JERSEY	275	0.189	32.111	6	0.55
NEH HEXICO	856	5.666	18.135	42	0.74	NEH YORK	642	13.854	59.122	90	0.65
NORTH CAROLINA	703	6.801	26.505	44	0.65	NORTH CARDLINA	251	4.442	46.485	48	1.04
NORTH DAKOTA	530	949	4.906	6	0.83	NORTH DAKOTA	40	181	12.397	1	0.55
OH 10	847	7.945	25.699	44	0.55	OHIO	726	15.563	58.730	35	0.22
OKLAHOHA	723	3.620	13.718	37	1.02	OKLLAHOMA	207	3.282	59.610	15	0.52
OREGON	595	3.698	17.028	35	0.95	PENNSY ${ }^{\text {OREGANIR }}$	422	7.764	50.406	48	0.62
PENNSYLVANIA	1.168	8.027	18.861 33.399	1	0.39	RHODE ISLAND	49	1.406	78.813	15	1.07
RHODE SOUTH CAROLINA	673	5.616	23.685	49	0.84	SOUTH CARDLINA	125	2.207	48.373	13	0.59
SOUTH DAKOTA	632	1.341	5.813	16	1.19	SOUTH DAKOTR	46	223	13.282	1	0.45
TENHESSEE	780	6.772	23.786	62	0.92	TENNESSEE	282	5.778	58.135	265	1.14
TEXAS	2,286	12.134	14.542	172	1.42	TEXAS	943	23.311	67.726	285	0.52
UTAH	792	2.431	6.409	49	2.02	UTAH	146	2.871	53.875 19.742	2	0.82
VERHONT	286	7999	9.570	13	${ }_{0}^{1.30}$	VERMONT	r34 299	8. 158	74.751	23	0.28
VIROINIA	777	7.300	25.740 19.784	60	0.82 1.15	VIRSHINIA	242	7.564	05.633	23	0.30
HASHINGYON	520 458	7.755 2.836	19.784	46	1.62	WEST VIRDINIA	242	1.175	34.991	14	1.19
HISCONSIN	518	4.055	21.530	30	0.74	HISCONSIN	124	2.655	58.861	4	0.15
WYOHINO	863	1.752	5,562	22	1.26	HYOMINO	50	163	8.932	4	2.45
TOTAL	33.677	205.011	16,678	2.139	1.04	TOTAL	11.603	285,325	67.372	1.729	0.61

[^2]TABLE 3-B. FATAL ACCIDENTS BY STATE AND HIGHMAY sYSTEM - 1991
FEDERAL-AID PRIMARY SYSTEM - NONINTERSTATE

				RURAL						URBAN		
	state	HIPHMAY	vehtcle MILES	$\begin{aligned} & \text { DRILY } \\ & \text { VEHICLE } \end{aligned}$	HCC	AL	state	HIOHLAPY	yEhicle HILES	DAILY VEHICLE	${ }_{\mathrm{ACC}}^{\mathrm{FA}}$	AL ${ }_{\text {NTS }}$
				PER HILE	number	RATE $1 /$				PER MILE	NUMBER	RATE 1/
	ALABAMA	5.882	0.544	3,980	271	3.17	ALABama	869	4.870	14.729	89	1.91
	${ }_{\text {AL }}^{\text {ALASKM }}$	9.949   .254	9. ${ }^{469}$	1.954 3.130	148 148	1.71 3.93	ALASKA	-6939	2.229	9.959 29.811	15	0.44 0.67
	ARKANSAS	${ }^{4} .748$	5.753	3.320	155	2.87	ARKANSAS	487	2.251 2.329	23.811 13.102	15 33	0.67 1.42
	CALIFORNIA	9.501	23.345 4.218	6.732 3.024	598	2.56 2.37	CALIFORNIA	1.578	39.603	68.759	988	0.98
	connecticut	712	2.340	9.004	29	2.37 1.24	coniecticut	-635	4.692	20.244 $\mathbf{2 2 , 3 2 3}$	51 42	1.09 0.89
	DELAMARE	934	1.705	13.986	26	1.52	DELAMARE	108	4.775	19.660	11	1.42 1.42
	Florida	5.742	14.098	6.727	963	2.57		$\begin{array}{r}178 \\ 2.300 \\ \hline\end{array}$	21.890	29.090 24.559	295	1.85
	OERROIA	8.616	12.422	3,950	308	2.48	bebrgia	2.571	20.617 9.847	24.559 17.173	${ }_{151}^{281}$	1.36 1.53
	HaLAII	6.690 2.698	1.339 2.128	9.406 2.194	36 68	2.69	HAMAII	121	1.491	33.760	18	1.21
	iLLINOIS	2.640	10.005	2.194   $\mathbf{3} 496$	238	3.10 2.36	${ }_{\text {ILPA }}$	2.056	4.426 14.028	13.571 18.675	217	0.94 1.55
	INOIANA	4.236	9.748	-6.305	195	2.01	INDIANA	2.772	14.620	16.396	76	1.65
	${ }_{\text {KRNSSAS }}$	8.051 7.709	8.930	2.350 2.019	157 103	2.27 1.81	${ }_{\text {1 }}$ 104P ${ }^{\text {a }}$	714	2,403	9.221	36	1.50
	KENTUCKY	9:366	6.168	5.020	169	2.74	KANSAS	395   173	1,597   2,857	13.061   16.548	12 42	0.75 1.47
	louisiana	2.657	4.799	4.948	141	2.94	LOUISIANA	483	3.157	17.907	60	1.90
		1.823 1.565	3.209 6.383	4.814 11.174	149	1.53 1.77		188	6.61 6.699	13.422 32.950	97	0.54 1.45
	Massachusetts	1.011	${ }^{3} .505$	9,498	32	0.91	massachlisetts	1.199	${ }_{9.078}$	20.743	${ }_{68}$	0.75
	MICHIOAN	6.258	12.071	5.285	193	1.60	MICHIGAN	974	7.987	22.466	106	1.33
J		8.650		2.636	130	1.56	MINNESOTA	645	9,741	15.890	36	0.96
	MISSISSIPPt	6.428	6.221 10.135	3.140 4.298	222	3.57	MISSISSIPPI	344	1,653	13.165	${ }^{26}$	1.57
	MONTANA	6.461 5.351	10.135 2.598	4.298 1.390	239 74	2.36 2.85	MISSOURI	549 109	3.589	17.911 12.236	38	1.06
	nebraska-	6.935	4.171	1.648	89	2.19	nebraska	263	1.392	14.501	12	0.86
	NEVAOA	1.790	1.362	2.085	59	3.89	NEVADA	71	1.024	39.514	12	1.17
	NEH HAMPSHIRE	7977	3.579	6.943 12.303	68	1.64	NEH HAMPSHIRE	164	1.054	17.609	11	1.04
	NEN MEXICO	3.662	2.897	2.167	123	4.25	WEW MEXICO	${ }_{228}$	1.080	12.241   187	119	1.31 2.13
	NEH Y YRK	6,402		4,941 $\mathbf{6 , 7 1 7}$	228 149	1.97	NEL YORK	2.077	21.378 4.547	20.199	289	1.35
	NORTH DAKOTA	5.437	1.773	893	26	1.47	NORTH DAKOta	${ }_{198} 6$	4.439	20.456	${ }_{2}$	0.46
	${ }^{\mathrm{OH} \mathrm{H} \text { IO }}$	4.978 4.876	10.930	6.018	2938	2.68	OHIO	1.590	9,962	17.166	182	1.83
	OREOON	4.876 4.640	5.812	3.266 3.019	(132	2.27 2.62	OKLAHOMA	432 403	2.255 2.868	14.301	19	0.84 0.98
	PENHSYLVANLA	7.772   163	16.748	6,904	418	2.50	PENNSYLVANIA	2.177	15.496	19.502	229	1.48
	SOUTH CAROLINA	4.968	8.500	4:688	236	2.78	SHEOE ISLAMD	271 726	4.772	18.064	23	1.45
	SOUTH DAKOTA	5,686 5.251	2.231	1.075	49	2.20	SOUTH DAKOTA	108	429	10.889	3	0.70
	TEXAS	14,826	22.020	4.729	286 419	2.94 1.90	TEXNESSEE	945 1.977	5,920 18.849	17.163 26.121	103	1.74
	UTAH	2.606	1.801	1.969	43	2.39	UTAH	110	620	15,442	${ }_{9}$	1.45
	VERMONT	1.041 1.520	10.532 10.701	4.032 19.288	$\begin{array}{r}27 \\ 247 \\ \hline\end{array}$	1.76   2.31   2.	VERHONT	${ }^{83}$	$\begin{array}{r}345 \\ \hline\end{array}$	11.388	4	1.16
	HASHINGTON	4.372	5.317	19.332	144	2.71	HASHINOTON	1.002	5,242 5.846	14.333 24.565	${ }_{98}$	1.05 0.65
	hest viroinia	2.202	3.751	4,667	117	3.12	Hest rirginia	213	1.082	13.917	17	1.57
	cisteming	8,368 2.865	11.880 1.598	3.854 1.528	248 32	2.09 2.00	Hisconsin	1.001 124	5.825 406	15.943	48	0.82 0.25
	TOTAL	222.794	390.295	4,062	7.756	2.35	TOTAL	34.281	277.823	22.216	3,530	1.27
	$1 /$ fathl accidents per 100 million vehicle miles.											



TABLE 3-D. FATAL ACCIDENTS
BY STATE AND HIGHWAY SYSTEM - 1991

FEDERAL-AID SECONDARY 8YSTEM

State	MAJOR COLLECTOR				
	HI GHWAY MILES	$\begin{aligned} & \text { VEHICLE } \\ & \text { MILES } \\ & \text { (MILLIONS ) } \end{aligned}$	$\begin{aligned} & \text { DAILY } \\ & \text { YEHICLE } \\ & \text { MILES } \\ & \text { PER MILE } \end{aligned}$	FATAL ACCIDENTS	
				NUMBER	RATE 1/
ALABAMA	11.648	4.488	1.056	204	4.55
ALASKA	1.802	428	651	19	4.44
ARIZONA	3.238	2.871	2.429	77	2.68
ARKANSAS	7.389	2.120	786	90	4.25
CALIFDRNIA	11.192	10.309	2.524	429	4.16
COLORADO	3.427	1.322	1.057	48	3.63
CONNECTICUT	879 604	1.378	4,295	23 16	1.67 2.54
DIST. DF COL.	-604	-629	2.853	- 16	2.54
FLORIDA	4.359	2.961	1,861	101	3.41
GEORGIR	14.012	6.444	1.260	202	3.13
HAWAII	435	583	3.672	15	2.57
1 DAHO	4.182	1.153	755	46	3.99
ILLINOIS	12.942	4.305	${ }^{9} 911$	140	3.25
INDIANA IOWA	9.759 13.576	8.363 2.575	2.348 520	171	2.04 2.99
KANSAS	22.643	2.687	325	88	3.28
KENTUCKY	7.226	5.148	1.952	190	3.69
LOUISIANA	7.329	5.412	2.023	202	3.73
MRINE	2.742	1.783	1.782	37	2.08
MARYLAND	1.922	2.373	3.383	66	2.78
MASSACHUSETTS	2.007	1.637	2.235	23	1.41
MICHIGRN	17.080	10.859	1.742	250	2.30
MINNESOTA	16.650	3.698	608	103	2.79
MISSISSIPPI	11.699	3.514	823	138	3.93
MISSOURI	18.069	5.451	827	198	3.63
MONTANA	4,737	. 632	366	22	3.48
NEBRASKA	11.456	1.277	, 305	35	2.74
NEVADA	2.314	. 915	1.083	36	3.93
NEW HAMPSHIRE	1.235	1.250	2.773	22	1.76
NEW JERSEY	1.703	2.557	4.114	67	2.62
NEW MEXICO	3.645	1.228	. 923	49	3.99
NEW YORK	6.296	5.589	2.432	147	2.63
NORTH CAROLINA	10.329	11.403	3.025	254	2.23
NORTH ORKOTA OHIO	10.596 11.790	776 9.240	2.147	18 143	2.32 1.55
OKLAHOMA	11.775	9.240 3.994	2.147	143 89	1.55 2.23
OREGON	7.781	2.632	927	87	3.31
PENNSYLVANIA	7.992	6.177	2.118	174	2.82
RHODE ISLAND	201	158	2.154	6	3.80
SOUTH CAROLINA	8.536	5.085	1.632	875	3.44
SOUTH DAKOTA	11.091	928	229	27	2.91
TENNESSEE	5.450 32.705	3.223	1.620	130	4.03
TEXAS	32.705	13.931	1.167	373	2.68
UTAH   VERMONT	2.724	864	$\begin{array}{r}869 \\ \hline 545\end{array}$	20	2.31
VERMONT	1.913	1.079	1.545	22	2.04
VIRGINIA	10.206 7.376	6.677	1.792	177	2.65
WASHINGTON	7.376 6.353	5.253 3.483	1.951 1.502	107 108	2.04 3.10
HISCONSIN	13.036	4,625	972	109	2.36
WYOMING	2.264	499	604	13	2.61
TOTAL	400.315	185.966	1.273	5.363	2.88
$1 /$ FATAL ACCI	PER 100 M	ON VEHICLE	ES.		

TABLE 3-E. FATAL ACCIDENTS BY STATE AND HIGHMAY SYSTEM - 1991 NONFEDERAL-AID ARTERIAL SYSTEM


TABLE 3-F. FATAL AGCIDENTS BY sTATE AND HIGHWAY 8YSTEM - 1991
nonfederal-aid collector system

8TATE	RURAL					state	URBAN				
	$\underset{\substack{\text { HIOHARY } \\ \text { HILES }}}{ }$	VEHICLE   MILES   MILIONS$\|$	$\begin{aligned} & \text { DAILYYE } \\ & \text { VEICLE } \\ & \text { HER MILES } \end{aligned}$	fatal ACCIDENTS			HIOHMAY	$\begin{aligned} & \text { VEHICLE } \\ & \text { HILES } \\ & \text { HILLIONS ) } \end{aligned}$	OAILY   vehicle   PER MILE   PER	FATALACCIDENTS	
				number	Rate $1 /$					number	RATE 1/
flıbama	8.878	1.120	440	54	4.82	Alabama	481	297	1.706	8	2.79
ALALASKA	8.971 3.234	197 281	556 238	${ }_{9}^{2}$	1.02 3.20	ALASKA	28 930	793	1.889 2.396	0	0.00 0.13
ARKANSAS	11.588	1.951	461	94	4.82	ARKANSAS	702	${ }^{356}$	${ }^{1} 1.391$	I	0.28
CALIFORMIA	11:902	4.245 1.780	$\begin{array}{r}1.002 \\ \\ \hline 06\end{array}$	140	3.30 2.70	CCLIFORNIA	2,700	3.729 662	3.784	49	1.31 1.21
connecticut	$\begin{array}{r}16.92 \\ 1.198 \\ \hline 158\end{array}$	1.780	1.405	12	2.70 1.95	COMNECTICUT	(193	662 184	3.403	8	1.21 2.17
OELAMARE	${ }^{156}$	80	1.405	0	0.00	DELAMARE	13	${ }^{25}$	5.269	0	8.00
florioa cos.	5.496	2.062	1.028	87	4.22	florion	2.146	3.554	4.537	0	0.00
OERROIA	7.258	2.066	780	46	2.23	ceordia			4		-
${ }_{\text {tole }}^{\text {tohat }}$	1.38 4.754	190	$\begin{array}{r}3.828 \\ \hline 181\end{array}$	5 5	2.63 4.78	HRYAIt	$14{ }^{\frac{1}{7}}$	$13{ }^{\frac{1}{4}}$	2.748 2.479	0	0.00 0.00
illimois	4.856	1.414	798	37	2.62	illinots	198	195	2.698	3	1.54
INDIANA	10.287 16.390	1.9283	512 125	42 29	2.18   3.87	INDIANA	173	104	1.647 $\mathbf{1}, 697$	0	0.00
KANSAS	9.393	304	129	12	3.87 3.95	KPNSFS	271	62 439	2.0938	${ }_{5}$	1.14
KENTUCKY	9.380	2.196	643	94	4.28	kEATUCKY	96	19	. 542	0	0.00
LOUISIANG	4.304	1:458	( $\begin{array}{r}924 \\ 1.020\end{array}$	45 21	3.10 2.02	hailse	350   3	248 32	1.941 2.740	3   2	1.21 6.25
Maryland	1,880	782	1.140	16	2.05	maryland	485	591	3.339	13	2.20
Massachusetis	${ }^{1} .951$	+ 414	581	17 58	4.11	MASSACHUSETTS	156	111	1.949	2	1.80
MINESSOTA	17.876	1.806	653 251	(58	3.21   2.34   2.	Hichigan	662   1.239	2.638	2.640 4.473		1.10 0.94
Mississippl	2.917	${ }^{386}$	363	14	3.63   1   1	MISSISSIPPT	${ }^{2}$	1	1.370	0	0.00
hontama	11.093	467	115	8	1.71	hontana	127	101	3.179	12	0.00
Nebrnska	9.231	286	242	18	6.29	NEERASKA					
MEH HAMPSHIRE	1.232	429	954	10	2.33	NEH HAMPSHIRE	4	39	2,055	0	0.00
NEH JERSEY	1.300	977	2.059	25	2.56	MEH JERSEY	-969	117	3.339	4	3.42 2.32
NEH YORK	10.833	5.455	1.380	98	1.80	MEW YORK	384	874	${ }_{5.236}$	${ }_{6}^{6}$	2.69
NORTH CAROLINA MORTH ankota	9.237	3.878	1.150	149	3.84	MORTY CAROLINA	1.014	804	2.172	3	0.37
OHIO	7.117	2.265	872	1	0.04	OHIO			421		0.00
OKLAHOMA	12.725	1.216	262	7	0.58	oklahoma	458	312	1.900		1.92
ORENSTYLVAMIA	${ }_{8.371}$	2.804	918	75	2.21 2.67		31	110	2.301	-	0.00
RHODE ISLRMD	153		1.164	1	1.54	RHODE ISLAND					
SOUTH CAROLINA	7.006	171	${ }^{4} 64$	32	4.91 5.26	SOUTH CAROLINA SOUTH OAKOTa	624 14	${ }_{4} 132$	1.897	${ }_{0}^{3}$	0.69
TENMESSEE	10.797	2.459	624	91	3.70	TENEESSEE					
UTAH	24.204 4.615	$\begin{array}{r}3.296 \\ 337 \\ \hline\end{array}$	273	8	2.43 1.19	TEXAS	5.284	5.852	9.094 1.637	1	0.02 2.04
verhont	989	180	499	4	2.22	yermont	-		-		
VIROLHAP WASHIMOTOM	3.410 6.541	521 1.759	419   18	17 43	3.26	VIROINIA	186	62	4.29	0	0.00
Mest liroinia	2.171	- 349	440	9	2.58	hest virginia	2	1	1.370	0	0.00
wrohime	7.881	$\begin{array}{r}1.063 \\ \hline 46\end{array}$	403 156	14	2.63 3.21	¢isconsin	559	${ }^{816}$	3.019 2.740	8	1.30 0.00
TOTAL	390.833	59,841	494	1.721	2.89	TOTAL	22.025	25,222	3.137	185	0.73

[^3]

TABLE 3-H. FATAL AGCIDENTS BY STATE AND HIGHWAY 8YSTEM - 1991
TOTAL RURAL AND URBAN SYSTEMS

table 4-A. NONFATAL INJURY ACCIDENTS BY state and highmay system - $1991^{1}$ federal-aid interstate system

gTATE	RURRL					biate	URBAN				
	MIOHMAYMILES	$\begin{gathered} \text { VEHICLE } \\ \text { MILES } \\ \text { MILLIONS ) } \end{gathered}$	$\begin{aligned} & \text { DRILY } \\ & \text { VEHICLE } \\ & \text { MILES } \\ & \text { PER MILE } \end{aligned}$	NONFATAL INJURY ACCIDENTS			HIGHMAYHILES	$\begin{gathered} \text { vEHICLE } \\ \text { MILES } \\ \text { (HIGLIONS ) } \end{gathered}$	$\begin{gathered} \text { DAILY } \\ \text { VEHICLE } \\ \text { MTLES } \\ \text { PER MILE } \\ \hline \end{gathered}$	NONFATAL INJURY ACCIDENTS	
				NUPBER	RATE 2/					MUMBER	RATE 2/
AlAbama	644	4.515	19.208	733	16.23	ALABAMA	255	9.737	40.150	696	18.62
ALASKA	1.038	701	1.850	428	61.06	ALASKA	51	430	23.100	319	74.19
ARIZONA	1.039	5.014	13.221	1.243	24.79	ARIZONA	130	2.939	61.939	880	29.94
ARKANSAS	419	2.890	18.505	. 277	9.79	ARKANSAS	123	1.780	39.648	398	22.38
CALIFORNIA	1.415	14.754	28.587	3.059	20.73	CALIFORNIA	984	61.191	142.530	15.570	30.42
COLDRADO	793	3.604	12,451	1.259	34.93	COLORADO	150	3.561	65,041	2.005	56.30
CONNECTICUT DELAHRE	109	1.421	35.717	266	18.86	CONNECTICUT	232 41	6.394 972	75.508 64.952	2.323 258	36.33 26.54
DELAT. DF COL.		-	-		$\overline{7}$	DIST. Of COL.	12	437	99.772	257	56.81
FLORIDA	1.022	9.115	24.435	1.591	17.45	FLORIDA	422	11.166	72.492	4,043	36.21
GEOROIA	873	9.013	28.285	1.363	15.12	georgip	372	10.039	73.936	4.169	41.59
HANAII	5	+102	55.890 7.931	421	44.12 27.20	MAHAII IOAHO	38 74	1.386 598	99.928 22.140	826 157	59.60 26.25
ILLINOIS	1.415	7.723	14.953	1.473	19.07	ILLINOIS	547	14.374	71.994	8.781	26.25 47.18
inotana	863	6.943	22.042	1.541	22.20	INOIANA	274	5.104	51.035	734	14.38
104 A	844	3.307	14,069	478	14.45	104A	138	1.379	27.377	426	30.89
KANSAS	712	2.550	9,812	488	19.14	KANSAS	160	2.020	34.589	828	40.93
KENTUCKY	579	4.827	22.841	765	15.85	KENTUCKY	184	3.647	54.303	1.130	30.98
LOUISIANA	657	4.481	18.686	1.135	25.33	LOUISIRNR	187	3.559	52.143	1.971	55.38
MAINE	313	1,694	14.828	396	23.38	MAINE	63	- 449	23.210	. 212	47.22
MARYLRND	241 170	3.179 2.098	36.139 33.811	475 994	14.94 47.38	MRRYLAND MASSACHUSETTS	240 397	8.432 10.417	96.258 71.888	2.680 $\mathbf{3 . 9 9 3}$	31.78 38.33
MASSACHUSETTS	783	5.782	20.231	2.094	36.22	MICHIGAN	455	11.413	68.722	4.905	42.98
hinnesota	681	2.994	12.045	526	17.57	MINNESOTA	230	5.080	60.274	1.584	31.30
MISSISSIPPI	560	2.777	13.586	323	11.63	MISSISSIPPI	124	1.292	28.548	326	25.23
MISSOLRI	841	5.570	18.145	1.117	20.05	MISSOUR1	336	0.083	65.908	3,675	45.47
MONTANA	1.144	1.796	4.301	520	29.40	MONTANA	47	166	9.676	45	27.11
NEPRASKA	444	1.946 1.572	12.008	361 448	18.55 28.37	NEPRASKA NEVADA	37 46	640 1.001	47.390 59.619	361 920	56.41 91.91
NEW HAMPSHIRE	189	1.383	20.746	224	16.43	NEW HAMPSHIRE	44	1.672	41.843	93	13.84
NEH JERSEY	131	2.190	45.801	268	12.24	NEH JERSEY	275	0.183	81.524	3.140	38.37
NEH MEXICO	906	3.462	10.439	904	26.19	NEW MEXICO	93	1.090	32.111	530	48.62
NEH YORK	858	5,666	18.135	2.296	40.52	NEH YORK	642	13,854	59.122	7.524	54.31
NORTH CAROLINA	703	6.801	26.505	1.677	24.66	NORTH CAROL IMA	251	4.442	48.485	706	15.89
NORTH DAKOta	530	. 949	4.906	133	14.01	NORTH DAKOTR	40	181	12.397	48	26.62
OHIO	847	7.945	25,699	1.677	21.11	OHIO	726	15.563	58.730	7.609	48.89
OKLAMOMA	723	3.620	13.718	658	18.18	OKLAHOMA	207	3.282	43.439	1.687	51.40
OREOON	595	3.698	17.028	449	12.14	OREGON	132	2.872	59.610	1.098	36.23
PENNSYLYANIA	1.186	0.027	18.861	1.522	18.96	PENNSYLYANIA	422	7.764	50.406	2.237	28.81
RHODE ISLAND	21	5256	33.399	${ }^{26}$	10.16	RHODE ISLANO	49	1.406	78.613	520	36.98
SOUTH CAROLINA	673	5.818	23,685	640	11.00 20.95	SOUTH CAROLINA	125	2.207	48.373 13.282	662 99	30.00 44.39
TENNESSEE	780	6.772	23.786	1.152	17.01	tennessee	282	6.778	58.135	2.265	39.20
TEXAS	2.286	12.134	14.542	2.866	23.62	TEXAS	943	23.311	67.726	17.826	76.47
UTAH	792	2.431	8.409	739	30.40	UTAH	146	2.871	53.875	960	33.44
vermont	286	999	9,570	142	14.21	YERMONT	34	245	19.742	26	10.81
VIROINIA	777	7.300	25.740	1.116	15.29	VIRGINIA	299	8.158	74.751	2.243	27.49
MASHINOTON	520	3.755	19.784	1.002	26.68 24.44	WASHINGTON	242	7.564	85.633	3.897	51.52 40.43
HEST YIRGINIA	456 518	2.838 4.055	16.965 21.530	693 908	24.44 22.39	HEST YIROINIA	92 124	1.175 2.655	34.991 58.661	475 944	40.43
wromino	863	1.752	5.562	608	34.59	HYOHING	50	163	8.932	70	42.94
TOTAL	93.677	205,011	16.678	49.806	21.37	tatal	11.603	285.325	67.372	117.131	41.05
RATES INCOMPLET GIVEN HIGHwAY RAT	ata here   IOH OR LO   Y: OTHER	PORTED BY A AS A RESULT TREME RATES	Mber of MINIMAL PEAR $T 0$	TES: SOME LEROE IN ULT FROM		ER AND UNDER ASS RSONS TO GIVEN H $2 /$ NONFATAL	MENT OF NO HAY SYSTE URY ACCIDE	ON-FATAL INJ 19.   ENTS PER 100	URY ACCID MILLION	3 AND IN ICLE MIL	

# TABLE 4-B. NONFATAL INJURY ACCIDENTS BY STATE AND HIGHWAY SYSTEM • $1991^{1}$ 

FEDERAL-AID PRIMARY SYSTEM - NONINTERSTATE


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{3Tate} \& \multicolumn{5}{|l|}{ARTERIAL} \& \multirow[t]{3}{*}{state} \& \multicolumn{5}{|l|}{collector} \\
\hline \& \multirow[t]{2}{*}{H! Hftuar} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{\[
\begin{gathered}
\text { QAILY } \\
\text { NEHLLELE } \\
\text { PER HILEE }
\end{gathered}
\]} \& \multicolumn{2}{|l|}{\[
\begin{aligned}
\& \text { MONFACAL INJURY } \\
\& \text { accionts }
\end{aligned}
\]} \& \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{\[
\begin{gathered}
\text { VEHICLE } \\
\text { MLLES } \\
\text { (MILIONS ) }
\end{gathered}
\]} \& \multirow[t]{2}{*}{VEHILY PER MILE} \& \multicolumn{2}{|l|}{\begin{tabular}{l}
accidents \\
MONFATAL INJURY
\end{tabular}} \\
\hline \& \& \& \& Number \& Rate 21 \& \& \& \& \& number \& RATE 2/ \\
\hline \% 9 日月 \& 1.548 \& 4.899 \& \({ }^{8,880}\) \& 77 \& 299.67 \& RLAB \& 1,253 \& 1.877 \& \({ }_{4}^{4.104}\) \& 202 \& \({ }^{223.87}\) \\
\hline ALASKA \({ }_{\text {ARILOMA }}\) \& 1.133
1.745 \& 10.789 \& (12.339 \& 1.375
19.792 \& 229.65 \& ALASKA \& 104
720 \& \({ }^{973}\) \& 2.028
3.779 \& \(\begin{array}{r}215 \\ 1.035 \\ \hline\end{array}\) \& 279.22
104.23 \\
\hline  \& 12.781 \& - \(\begin{array}{r}2.014 \\ 83 \\ \hline 126\end{array}\) \& 8.484
17.813 \& 106.330 \({ }^{1.929}\) \& +95.78 \& crananses \&  \& 7.717 \& - \& 14.651 \& -78.95 \\
\hline COLORAOC \& (1.604 \& 5.2.89
4.475
4.4 \& 9:034 \& 9.211 \& 174.15
198.35
19 \& COLORADO \& \(\begin{array}{r}1.626 \\ 1.721 \\ \hline 18\end{array}\) \& 4.437
2.399 \& 1.913
9.708 \& 14.465
3.430 \& 110.98 \\
\hline CONNELICUT \& \({ }^{1.235}\) \& 4.4986 \& 16.741 \& :141 \& 114.56 \& OELCMARE \& \({ }^{1} 1.156\) \& \(\begin{array}{r}2.317 \\ \hline 372 \\ \hline\end{array}\) \& 5.567 \& \({ }^{3.430}\) \& 116.09 \\
\hline  \& 2.029 \& 18.475 \& 12.980
22.290 \& 1.711
39.059 \& \begin{tabular}{l}
406.41 \\
200.68 \\
\hline
\end{tabular} \&  \& \(\begin{array}{r}1.14 \\ 2.740 \\ \hline\end{array}\) \& 8.065 \& \begin{tabular}{l}
8.126 \\
6.064 \\
\hline 8.054
\end{tabular} \& 1.648 \& \({ }^{511.80}\) \\
\hline beorbit \& 2, \({ }_{143}^{2,186}\) \& 7.778 \& , \({ }^{\text {9.7.79 }}\) \& (10,711 \& +139.34 \& OEROGIA \& 1.802 \& \({ }^{3.677}\) \& 5. 5.450 \& 4.262 \& 115.91 \\
\hline Hanal \& \begin{tabular}{l}
143 \\
\hline 174 \\
\hline 185
\end{tabular} \& \begin{tabular}{l}
1875 \\
\hline 1.287 \\
\hline 8.89
\end{tabular} \& 15.764 \& 2.135 \& 244. \({ }^{20}\) \& Hiphat \& 275 \& \({ }_{268}^{187}\) \& \({ }_{2}\) \& \({ }_{242}\) \& 173. 11 \\
\hline Llil mota \& 3.584
2.952 \& 16.208 \({ }^{16}\) \& 12.4.4980 \& 24.200
10.133 \& 149.31
119.71 \& Illinas \& 3.106 \& 6.605 \& S. \({ }_{\text {S }}\) \& 9.645
\(\mathbf{8}, 929\) \& \begin{tabular}{l}
146.03 \\
117.91 \\
\hline 109
\end{tabular} \\
\hline \({ }_{\text {IOMA }}\) \& \({ }_{1}^{2,483}\) \& 2.478 \& 4.578 \& 3,485 \& \({ }_{140.64}\) \& 10 HB \& \({ }^{968}\) \& \({ }^{\text {c88 }}\) \& 1.684 \& 1.099 \& 186.90 \\
\hline KAMSAS \& 1.156 \& 3.585 \& \%.451 \& 5.444 \& \begin{tabular}{|c}
152.66 \\
\hline 50.38 \\
\hline
\end{tabular} \& KRNSAS \& 500 \& 399 \& \(2 \cdot 186\) \& 413 \& 109.51 \\
\hline Kentick \& 12.369 \& 5.544 \& \({ }_{11} 1.095\) \& 7,478 \& -194.88 \& Kenticky \& \({ }_{792}\) \& 1.021 \& 3.532 \& . 1728 \&  \\
\hline Matice \& 1.347 \& \({ }^{1} 8.098\) \& - 15.7645 \& 14.5989 \& 170.95 \&  \& - \(\begin{array}{r}362 \\ 686 \\ \hline\end{array}\) \& 1.480 \& 2.684 \& 2,694 \& - 164.5 \\
\hline massachuseits \& 3,335 \& 10.133 \& 8.324 \& 21, 399 \& 211.18 \& Massachusetts \& 2.570 \& 2.783 \& 2.967 \& 7.780 \& 279.55 \\
\hline \({ }_{\text {HICHILOAN }}^{\text {HiNESOTA }}\) \& 4:725 \& 19,213 \& +12.460 \& 8 B .125 \& 123.37 \& HiNNESOTA \& 670 \& . 579 \& \({ }^{2} \times 669\) \& \(5{ }^{511}\) \& -381.34 \\
\hline Mississippl \& 9,959 \& 2.364 \& -6.754 \& 3.782 \& [112.49 \& Mississippi \& \begin{tabular}{l}
761 \\
585 \\
\hline 8
\end{tabular} \& \({ }_{790}^{820}\) \& \({ }_{3}^{2} .958\) \& \({ }^{1.0681}\) \& - 130.24 \\
\hline montana \& 1. \& . 605 \& 6,849 \& 445 \& 73.55 \& MONTAMP \& 101 \& 94 \& 2.279 \& 180 \& 190.48 \\
\hline Negraska \& 456 \& \({ }^{1}\) \& 8.090
17.225 \& 5.0801 \& \({ }_{222}^{261.57}\) \& NEEVARASA \& \({ }_{101}^{405}\) \& \({ }_{208}^{404}\) \& \begin{tabular}{l}
3.642 \\
\hline
\end{tabular} \& \({ }_{291}\) \& - 2259 \\
\hline NELH HRMPSHIRE \& \({ }^{368}\) \& \({ }^{1} \cdot 1.173\) \& 8.326 \& -1.5520 \& 129.58 \& NEH HAMPSHIRE \& \({ }^{397}\) \& -325 \& 2,642 \& \({ }^{4.49}\) \& 138.15 \\
\hline NEH JEHEXEY \& \({ }^{3} .6545\) \& 12,931 \& 19,618 \& 4. \& - 181.70 \& NEL MEXICO \& 135 \& 2.252 \& 5.114 \& - 540 \& \({ }_{214} 29\) \\
\hline NEM YORK NOR TH CAROLINA \& 5.184 \& 25.228
10.522

20, \& -13.985 \& 42.792
8.832 \& ${ }^{169.62}$ \& NEH YORK
NORTM
CaROLINA \& 3. 366 \& 5.659 \& ${ }^{4} .1348$ \& 8.231 \& 110.11 <br>
\hline NORTH CARMİA \& 2.768 \& ${ }^{10.522} 4$ \& 10,414 \& ${ }^{8,588}$ \& -123.72 \& NORTH DRROTA \& 213 \& 175 \& 2.251 \& ${ }_{228}$ \& 129.14 <br>
\hline ${ }^{\text {OHIO }}$ \& 3.718 \& 13,774 \& 10.185 \& 94.368 \& 249.15 \&  \& 4.1935 \& 8.793 \& ¢ 4.509 \& 15.177 \& ${ }^{223} 9.42$ <br>
\hline ${ }_{\text {OREPONM }}$ \& 2, \& 3.410 \& 7.734 \& 6.847 \& 200.79 \& Oreoon \& 946 \& 1 , 182 \& 3.829 \& 1.708 \& 144.33 <br>
\hline PENHSYLVAMIA \& 9,855 \& 13.947 \& -9,912 \& 16.134
2,911 \& 115.68 \& PENNSTLVANIA \& $\begin{array}{r}3.193 \\ 501 \\ \hline\end{array}$ \& 4.924 \& ${ }_{3}^{4.225}$ \& 2.614 \& $\begin{array}{r}53.09 \\ 114.91 \\ \hline 1\end{array}$ <br>
\hline South carilima \& ${ }^{639}$ \& ${ }^{2} \mathbf{2} 805$ \& ${ }^{11.293}$ \& 5.4545 \& 209.37 \& SOUTH CAROLINA
SOUTH
DAKOTA \& $\begin{array}{r}537 \\ 102 \\ \hline\end{array}$ \& 1.093 \&  \& ${ }^{3}$ \& (14.10 <br>
\hline Stenteseer \& 1.353 \& 8.715 \& 13:597 \& 11.147 \& ${ }_{168} 180$ \& TEENESSEE \& 1.825 \& 2.424 \& ${ }_{9} \mathbf{9}$,634 \& 9.814 \& 157.54 <br>
\hline TEXAS \&  \& $\begin{array}{r}25.868 \\ 3.131 \\ \hline 10.6\end{array}$ \& +10.641 \& 22.180 \& -86.35 \& TEXAS \& 1.611
390 \& ${ }^{1.8924}$ \& ${ }^{3} \cdot 102$ \& 1.122
1.390 \& 138.69 ${ }^{68}$ <br>
\hline yerhont \& 171 \& \& 7.498 \& ${ }^{558}$ \& 119.23 \& VERHONT \& 178 \& 172 \& 2.647 \& 218 \& 126.74 <br>
\hline  \& 1.842

2.497 \& $\begin{array}{r}10.628 \\ 9.940 \\ \hline\end{array}$ \& | 17.730 |
| :--- |
| 10.906 | \& 14.845 \& +139.70 \& Yiroliait \& 1.40488 \& 2.142

2.490 \& 4.180 \&  \& 113:25 <br>
\hline mest mirginia \& ${ }^{107}$ \& ${ }^{1.4935}$ \& 9.660 \& 2.712 \& 188.99 \& hest virointa \& 402 \& 503 \& -3.429 \& 1.377
183 \& 74.95 <br>
\hline  \& 2.160 23 \& ${ }^{6.5092}$ \& \% 8.248 \& ${ }^{10.128}$ \& 109.18
159 \& ${ }_{\text {HYOLINO }}$ \& - 323 \& 230 \& 2.951 \& . 228 \& 999:13 <br>
\hline total. \& 92.629 \& 402.891 \& 11.915 \& 609.979 \& 151.40 \& total \& 55.258 \& 02.050 \& 4.068 \& 118.340 \& 144.29 <br>

\hline | ys miohear cat |
| :--- |
| TES 1 ARE INCOMPLE | \& TOH OR LL

Y: OTHER \&  \& $$
\begin{aligned}
& \text { NOF HINIHINL } \\
& \text { OPPERR TOL }
\end{aligned}
$$ \&  \& \& dVER and under PERSONS TO OIV \&  \& ${ }^{\text {NaNN-FATAL }}$ DENTS PER \& ury hect million \&  \& <br>

\hline
\end{tabular}

# TABLE 4-D. NONFATAL INJURY ACCIDENTS <br> BY STATE AND HIGHWAY SYSTEM - 1991 

FEDERAL-AID sECONDARY sYstEM

StATE	MAJJOR COLLECTOR				
	HIGHWAY MILES	$\begin{aligned} & \text { VEHICLE } \\ & \text { MILES } \\ & \text { (MILLIONS) } \end{aligned}$	DAILY VEHICLE MILES PER MILE	NONFATAL INJURY RCCIPENTS	
ALPBPMA	11.648	4.488	1.056	1.861	41.47
ALASKA	1.802	428	651	408	95.33
ARIZONA	3.238	2.871	2.429	1.145	39.88
ARKANSAS	7.389	2.120	786	1.105	52.12
CALIFORNIA	11.192	10.309	2.524	6.868	66.62
COLORRDO	3.427	1,322	1.057	+932	70.50
CONNECTICUT	879	1.378	4.295	1.156	83.89
DELAWARE	604	629	2.853	-381	60.57
DISTA OF COL.	4.359	2.961	1.861	6.136	207.23
GEORGIA	14.012	6.444	1.260	4.350	67.50
HAWPII	435	583	3,672	474	81.30
IDAHO	4.182	1.153	755	629	54.55
ILLINOIS	12.942	4,305	911	3.655	84.90
INDIANA	9.759	8.363	2.348	4.952	59.21
10WA	13.576	2.575	520	2.153	83.61
KANSAS	22.643	2,687	325	1.628	60.59
KENTUCKY	7.226	5.148	1.952	5.215	101.30
LOUISIANA	7.329	5.412	2.023	5.204	96.16
MRINE	2.742	1.783	1.782	1.098	61.50
MARYLAND	1.922	2.373	3.383	2.244	94.56
MASSACHUSETTS	2.007	1.637	2.235	2.352	143.68
MICHIGRN	17.080	10.859	1.742	12.358	113.80
MINNESOTA	16.650	3,698	608	2.056	55.60
MISSISSIPPI	11.699	3.514	823	1.396	39.73
MISSOURI	18.069	5.451	827	4.194	76.94
MONTANA	4.737	. 632	366	407	64.40
NEBRASKA NEVADR	11.456 2.314	1.277 915	+ 305	990	77.53
NEW HAMPSHIRE	1.235	1.250	1,083	433 671	47.32 53.68
NEH JERSEY	1.703	2.557	4.114	4.005	156.63
NEW MEXICD	3.645	1.228	923	756	61.56
NEW YORK	6.296	5.589	2.432	13.273	237.48
NORTH CAROLINA	10.329	11.403	3.025	8.463	74.22
NORTH DAKOTA	10.596	. 776	201	275	35.44
OHIO	11.790	9.240	2.147	10,395	112.50
OKL $2 H O M A$	11.775	3.994	929	1.354	33.90
QREGON	7.781	2.632	927	1.525	57.94
PHEDE ISLAND	7.992	6.177	2.118	5.504	89.10
SOUTH CAROLINA	0.536	5.085	2.154 1.832	3.762	56.33 73.98
SOUTH DAKOTA	11.091	. 928	229	462	49.78
TENNESSEE	5,450	3.223	1.620	3.155	97.89
TEXAS	32.705	13.931	1.167	9.144	65.64
UTAH	2.724	864	869	551	63.77
VERMONT	1.913	1.079	1.545	542	50.23
VIRGINIA	10.206	6.677	1.792	5.915	68.59
UASHINGTON	7.376	5.253	1.951	8.562	162.99
HEST VIRGINIA HISCONSIN	6.353	3.483	1.502	5.310	152.45
HYOMING	13.036 2.264	4.625 499	972 604	3.518 219	76.06 43.89
TOTAL	400.315	165.966	1.273	163.230	87.77
I' INCDMPLETE DATA HERE REPORTED BY A NUMBER OF STRTES; SOME RATES ARE EXTREMELY HIGH OR LOW AS A RESULT OF MINIMAL MILERGE IN A GIVEN HIGHWAY CATEGORY: OTHER EXTREME RATES RPPEAR TO RESULT FROM THE OVER AND UNDER ASSIGNMENT OF NON-FATRL INJURY ACCIDENTS AND INJURED PERSONS TO GIVEN HIGHWAY SYSTEMS.   2/ NONFATAL INJURY ACCIDENTS PER 100 MILLION VEHICLE MILES.					

# TABLE 4-E. NONFATAL INJURY ACGIDENT8 BY STATE AND HIGHWAY SYSTEM • 1991 ${ }^{〔}$ monfederal-aid arterlal system 

BTATE	RURAL					STATE	URBAN				
	HIDHMAY HILES	$\begin{aligned} & \text { VEHICLE } \\ & \text { HILES } \\ & \text { (HILLION3) } \end{aligned}$	DAILY vehicle HILES PER MILE	nonfatal injury accidents			HIOHWAYMILES	$\begin{aligned} & \text { VEHICLE } \\ & \text { MILES } \\ & \text { IMILIDNS } \end{aligned}$	DAILY   vehicle MILES PER MILE	nONFATAL IMJURY ACCIDENTS	
				MUMBER.	RATE 2/					number	RATE $2 /$
ALABAM	-	-		-	-	ALABAMA	216	215	2.727	174	80.93
ALASKA	8	17	5.822	8	35.29	ALASKA	11	49	12.204	71	144.90
PRIZONA	-	-		0		PRIZONA	83	240	10.437	91	37.92
ARKANSAS	380	308	2.944	98	31.82	RRKANSAS	398	+ 488	3.208	-532	114.16
CALIFORNIA	16	29	4.968	14	48.28	CALIFORNIA	1.243	3.303	7.280	5.553	168.12
COLDRRDA	26	1	105	0	0.00	COLORADO	${ }^{8}$	8   88   8	2,740	45 183	562.50 269.12
COMNECTICUT	- 9	1	304	19	1.900 .00 0.00	CONNECTICUT	34	88 13	5.479 35.816	183 2	269.12 15.38
DELANARE	-	-	-		-. 0	DIST. DF COL.	${ }_{8}^{1}$	13	35.616 1.370	190	4.750 .00
FLORIDA	352	1.409	10,987	710	50.39	FLORIOA	374	2.420	17.728	1.616	68.78
georgia	- 10					ceorgia			-		
HAhAII			274 8.219	0 0	0.00 0.00	HRWAII	47		6.878	51	43.22
lCAHO	1	3	0.213	- 0	0.00	IDALINOIS	32	$\begin{array}{r}118 \\ \hline 99\end{array}$	6.878 $\mathbf{3 . 3 3 9}$	158	400.02
INDIANA			1,370		0.00	INDIANA	19	83	9.084	928	517.46
IOWA	3	1	913	0	0.00	10 HA	14	29	5.675	0	0.00
KANSAS	- 31	-		-		KANSAS	216	859	8.359 2.740	1.841	249.01
KENTUCKY	31 10	4	530 1.098	0	0.00	KENTUCKY LOUISIANA	291	821	2.740 5.847	425	88.44
LOUISE	1	3	8.219	0	0.00	MAINE	2	5	6.849	11	220.00
MARYLAMD	-					MARYLAND	11	23	5.729	22	95.65
MASSACHUSETTS	-	-	-	-	-	MASSACHUSETTS	3	1	913	5	500.00
MICHIGAN	-	-	-		-	MICHIGAN	672	2.473	10.082	731	29.56
MINNESOTA	-	-105			44.76	MINNESOTA	27	16	1.624	184	1.025.00
MISSISSIPPI	279	105	1.031	-47	44.76	MISSISSIPPI MISSOURI	514	1.291	3.914 7.032	2.189	155.00
nissouri montana	- 69	- 4	174	0	0.00	MONTANA	53	1.297	1.999	2.169 100	592.59
NEBRASKA			-			NEBRASKA					-
NEVADA			-		$\square$	NEVADA	21	48	6.001	95	206.52
NEW HAMPSHIRE	21	294	30.528	14	5.98	NEW HAMPSHIRE	26	187	19.705	$2{ }^{24}$	12.83
NEH JERSEY	124	1.504	33.230	605	40.23	NEW JERSEY	286	3.848	34.927	2.120	58.15
NEW HEXICO	5		548	0	0.00	HEW MEXICO	92	320	9.529	769	240.31
NEH YORK	257	158				NEH YORK NORTH CAROLIMA	8	782 1.939	18.183 6.478	617	0.08 42.14
NORTH CAROLINA NORTH ORKOTA	257	158	1.884	81 0	51.27	NORTH CAROLIMA NORTH DAKOTA	820		8.478		42.14
NORTH DAKOIA OHIO	2	-	-			OHIO					-
OKLAHOHA	282		3.847		12.12	oklahoma	161	170	2.893	85	50.00
DREGON	81	115	3.890	59	51.30	OREGON	28	49	4.795	88	134.69
PENNSYL Yania	-	- 2	820	- 0	-00	PENNSYLYAN1A			-	-	-
RHODE [SLAMD	- 3	- 2	1.826	0	0.00	RHODE ISLAND					29750
SOUTH CAROLINA	- 14	- 1				SOUTH CAROLINA	259	440 15	4.654 4.566	1.045	297.50 68.67
SOUTH DAKOTA	- 14	- 1	196	- 2	200.00	SOUTH DAKOTA	- 9	+ 15	4.566		6.67
TEMESSEE			1.828		100.00	TEXRS	1.787	6.342	9.723	1.363	21.49
UTAH	39	17	1.194	3	17.65	UTAH	42	- 59	9.849	- 75	127.12
VERMOMT	-534	214	291	- 0	-0.00	VERMONT	1				
VIREINIA	2.534	214	231	-0	0.00	YIRGINIA	$\begin{aligned} & 1 \\ & 9 \end{aligned}$	737	2.019 .178 14.307	73	9.91 0.00
HEST VIROINIA	-	-	-	-		HEST VIRGINIA	1	1	2.740	0	0.00
HISCONSIN			2.740		0.00	hisconsin	48	43	2.561	138	320.93
wyomina	253	15	162	83	553.33	hyohino	3	1	913	0	0.00
TOTRL	4.790	4.554	2,605	1.792	39.35	TOTAL	7.968	26.977	9.278	21:049	78.09
1/ InCOMPLETE DRTR HERE REPORTED BY $A$ nUMBER OF gTATES; SOME RATES ARE EXTREMELY HIOH OR LOM AS A RESULT OF HINIMAL MILEAOE IN A BIVEN hlohuar category: othen extreme rates bppefr to resul 9 frón the aver and						UNDER ASSIGNMENT OF NON-FRTAL INJURT ACCIDENTS RND INJURED PERSONS TO DIVEN HIGHMAY STSTEMS. if NONFATAL INJURY aCCIDENTS PER 100 millidn vehicle miles.					

TABLE 4－F．NONFATAL INJURY ACCIDENTS BY STATE AND HIGHWAY sY8TEM • 1991＇
NONFEDERAL－AID COLLECTOR SYSTEM

state	vupal					втапе	Uram				
							${ }^{\text {Hilumy }}$		（ex	Mowatil inury	
				Numer	RRIE 21					Wunber	Ratie 2
	${ }_{\text {cose }}^{\text {8．976 }}$			$\xrightarrow{\text { 5id }}$	¢52．96		\％	2820	${ }^{\text {a }}$	520	190：10
		1：3018		（1and	cite						cose
	${ }_{\text {cifi }}$	${ }^{815}$	1：105				速	（itict			旡：
cill	5．728	20：082	， 1.028080	4.045	${ }^{196} 128$		发	． $55^{3}$	4．tis	${ }_{3}$	－130：08
		cind	coicio		cifiz		1	${ }^{13,38}$	coind	50	\％ion
coill	（i：zan	1：972					发虺		（itas		（isp：20．20
	率：${ }^{\text {and }}$				cisit	cemen	边	旡	，	${ }^{10}{ }_{6}^{6}$	\％oroz
		（103	10．20	\％${ }^{\text {a }}$						32	，
隹	成：	1．：4bab	皆	${ }_{\text {a }}^{\text {ama }}$		${ }_{\text {anden }}$		2．123			
			cos	建		misisispr	${ }^{\text {fai }}$	， 10	隹：	${ }^{659}$	coide
	起：2at		${ }^{2012}$	${ }^{326}$		，	${ }^{25}$				
	ci：3a	，		${ }_{\text {che }}^{1.209}$	ciele		\％	${ }^{17}$			
		citaid	t：1900		cian						
coill		${ }^{\text {2 }}$ 2：2056		3．195	cidifit		150			${ }^{0}$	， 100.00
		2． 2.09	－${ }_{\text {cid }}^{\text {cid }}$	${ }^{\text {3 }}$ ． 6272	ciad			边	2：301	99	80．00
				4． 4.8	citien	隹	24	${ }^{482}$	1， $1: 598$	${ }^{598}$	\％
，	－24：804	${ }^{3}$	\％999	${ }^{2} 120$		cexas	迷	－ 95	3：0937	${ }^{58}$	${ }_{169}$
边			街	c．ind	cose				297	$\bigcirc$	0：0
\％	，	1． 1.96	－				559	（1it	（1：070	$1.92 \square_{0}^{\circ}$	215
rorat	330．933	59.641	494	83.42	106，35	torat	22.025	25．222	3.137	25，72	102.08

TABLE 4-G. NONFATAL INJURY ACCIDENTS BY STATE AND HIGHWAY SY8TEM - $1991^{\prime}$
NONFEDERAL-AID LOCAL SYSTEM

STATE	RURAL					StATE	URBAN				
	highuar MILES	VEHICLE MILES ( PILLIIONS 1	$\begin{gathered} \text { OAILY } \\ \text { VEHICLE } \\ \text { MILES } \\ \text { PER HILE } \\ \hline \end{gathered}$	NONFATAL IMJURY ACEIDENTS			HIOHAPY MILES	$\begin{gathered} \text { VEHICLE } \\ \text { MILES } \\ \text { (MILLIONS }) \end{gathered}$	$\begin{aligned} & \text { DAILY } \\ & \text { VEHIELE } \\ & \text { MILES } \\ & \text { PER MILE } \\ & \hline \end{aligned}$	NONFATAL INJURY ACCIDẼNTS	
				NUMBER	RATE 2/					NuMEER	RATE 2/
	48.888	3.910	220	2.521	64.48	alabama	12.263	4.668	1.043	4.230	90.82
	7.195		179	2. 218	46.08	ALASKA	1.170	4.336	. 7807	4.552	184.29
	30.388	1.718	155	1.776	103.38	ARIZONA	10.323	3.392	900	3.682	108.55
	44,984	1.117	68	462	41.36	ARKANSAS	4.817	644	366	1.104	171.43
	57,308	2.412	115	2,803	116.21	CALIFORNIA	50.476	14,213	771	29.456	207.25
	42.517	634	34	1.019	190.82	COLORADO	7.785	1.638	578	1.880	113.69
	8.252	960	421	962	100.21	CONNECTICUT	8.987	1.721	- 677	3.679	207.98
	2.775	468	480	498	106.87	DELAHARE CIST Of	1.161	743 353	1.753 1.468	470 836	63.26 236.09
	44.858	3.259	200	13.821	424.09	FLORIDA	37,740	20.282	1.472	28.989	133.07
	57.666	4.503	214	3.980	88.61	georgia	18.124	7.208	1.225	9.717	134.81
	1.619	659	1.115	407	61.76	HAHAII	1.025	1.029	2.750	1.185	115.16
	47.332	1.970 3.482	114	1.025 4.051	52.03 116.34	IOAHO ILIINAIS	1.635 22.626	7.437	732 854	811 20.818	185.58 292.37
	78,987 48,960	3.482 2.520	124	4.051 5.328	118.34	ILlinais	22.626	7.052	854 992	20.818 8.529	292.37 196.97
	65.085	1.463	62	3.046	208.20	10 HA	5,407	1.055	535	1.858	176.11
	83.904	1.571	51	1.651	105.09	KANSAS	6.469	1.713	725	2,424	141.51
	41.467	2.566	170	3.320	129.38	KENTUCKY	4.922	1.745	971	3,464	198.51
	31.307	2.436	213	5.589	229.43	LOUISIPMA	B.800	1.976	615	6.983	353 -39
	12.277 10.967	1.002	224	1.157 1.896	115.47	MAINE MARYLAND	1.520 8.953	240 1.798	439 550	7.057	195.83
	8.167	1.043	350	2.443	234.23	MASSACMUSETTS	13.357	8.317	1.091	14.736	277.15
	59.081	2.800	121	4.657	179.12	MICHIGAN	19.087	5.689	817	10.746	188.93
	76.984	2.445	07	2.554	104.46	MINNESOTA	10.261	2.721	727	3.134	115.18
	44.287	3.959	245	1.521	38.42	MISSISSIPPI	5.156	1.785	946	1.821	102.02
	75.207	3.408	124	8.054	236.33	Missourl	10.274	2.477	${ }^{661}$	4.549	183.65
	46,104 59,641	724 1.252	43 58	271 1.521	37.43 121.49	MONTANA NEBRASKA	1.618 3.599	850	1.101	2.143 1,250	329.69 176.80
	35.352	1.205	24	213	69.64	MEVRDA	2.126	593	764	1.277	215.35
	8,803	544	169	982	180.51	NEH HAMPSHIRE	1.472	258	480	281	108.91
	7.712	940	934	2.545	270.74	NEH JERSEY	15.799	10.692	1,854	12.015	112.37
	39.314	2.272	158	1.340	58.98	MEW MEXICO	4.477	1.169	715	2.233	191.02
	48.994	3.429	192	22.960	669.58	HEH YORK	26.099	8.221	869	32.683	397.55
	51.285 60.290	3.396 88	181	17.173	505.68 28.4	NORTH CAROLINR HORTH DAKOTA	19.749 1.119	7.354	1.465 708	19.634 620	266.98 214.53
	57.448	6.151	293	8.622	140.17	OHIO	21.220	10.359	1.337	17.024	184.34
	69,463	1.884	74	2.948	156.48	DKLAHOMA	8.170	3.349	1.123	4.495	134.22
	64.641	1.536	65	651	42.38	DREOON	6.610	1.278	530	1.540	120.50
	62.989	6.502	239	7.292	132.53	PENNSYLVANIA	18.751	5.893	B61	19.697	334.24
	98982		75		96.30	RHODE ISLAND	9.344	828	678	2.352	66.87
	96,541	2.197	165	3.018	137.28	SOUTH CARDLINA	6.455	709	301	$\begin{array}{r}2.389 \\ \hline 49\end{array}$	336.95 163.81
	47.098	1.650	96	3.365	209.94	TENNESSEE	11.071	3.275	810	6,647	202.96
	143.270	4.146	79	12.254	295.56	TEXAS	57.937	21.363	1.010	68.250	310.12
	26.847	520	53	784	150.77	UTAH	4.322	1,693	1.073	1.738	102.66
	8.711	479	151	401	83.72	VERMONT	10730	- 371	1.392	+126	93.96
	34.187	3.257	261	3.694	113.42	VIRGINIA	10.875	5.522	1.391	4.518	81.82
	44.504 20.500	$\begin{array}{r}1.211 \\ 964 \\ \hline\end{array}$	75 129	5.641 1.470	465.81 152.49	WRSHIMOTOH	11.391 1.972	3.205 446	771 620	6.410 184	200.00 41.26
	66.682	2.395	98	4.172	174.20	MISCONSIN	9.867	5.152	1.431	3.447	66.91
	22.811	340	41	179	52.85	WYOMINO	1.238	161	357	335	208.07
	2.146.926	98.154	125	177.037	180.37	TOTAL	526.122	188,365	981	978.787	201.09
I/ INCOMPLETE OATA MERE REPORTED BY A NUMBER OF STATES: SOME RATES ARE EXTREMELY HIOH DR LOM AS A RESULT OF MINIMAL MILEAOE IH A OIVEN HIOHHAY CATEGORY: OTHER EXTREME RATES APPEAR TO RESULT FROH THE						DYER AND UNDER GBSIGNHENT OF NON-FATRL INJURY ACCIDENTS AND INJUREO PERSONS TO OIVEN HIOHHAY SYSTEMS.   2/ NONFATAL INJURY ACCIDENTS PER 100 HILLION VEHICLE MILES.					

RURAL

state	RURAL					State	URBAN										
	$\begin{aligned} & \text { HIOHNAY } \\ & \text { RILES } \end{aligned}$	VEHICLE M1LEB (HILLIONS)	$\begin{aligned} & \text { OAILY } \\ & \text { VEICLE } \\ & \text { HLLES } \\ & \text { PER HILE } \end{aligned}$	NONFATAL IAJURYACCIDENTS			$\begin{aligned} & \text { HIGHWAY } \\ & \text { MILES } \end{aligned}$	$\begin{gathered} \text { VEHICLE } \\ \text { HILES } \\ \text { NILLDNS } \end{gathered}$	OAILY   vehicle HILES PER HILE	NOMFATAL INJURYACCIDENTS							
				Mumber	RATE 2/					Number	Rate 2/						
月LLABPMA	73.838 11.983		838	10.469	48.37	ALABAma											
ARIZONA	41.983	13.281	522 908	1.419 8.961	61.95 51.18		18.885 1.681 14.170	20.347 1.740 21.370	3.305   3.054	17.524 2.870	88.13 184.94						
crikansas	69.488	14.079	555	5.045	35.83	ARKONSAS	14.170 7.683	21.327 7.855	4,124	27.270	127.07						
COLORADO	91.034	65.094 11.459	1.658	26.273	47.69	CALIFORNIA	74.847	202.862	2,801	197.731	77.07 97.46						
CONNECTICUT	9	11.459	2.008	5.535 4.470	57.03 66.57	COLORADO	11.348	16.285	3.934	18.773	115.28						
OELAMARE	9.869	2,880	2.039	1.635	66.77	DELAHARE	10.964 1.643	19,913	4.976	24.048	120.77						
Florioh	61.827	32.904				DISTiof COL.	1.102	3,430	8.8 .405	3.279	-85.37						
cerota	88.425	94.449	1.463	-99,368	101.40 51.44	FLORIDA	47.747	80.579	4.624	86.647	107.63						
${ }^{\text {HaHAII }}$	59.6971	2.874	3,034	${ }_{1}^{1.894}$	65.90	hahali	22.057 1.507	38.557 5.269	4.789	43.553	112.96						
1 llingra	104.040	26:929	709	15.908	43.96 59.07	1 PAHO	2.738	3.207	3.209	6,364	127.75						
ICOLAMA	74.107	29.498	1.091	19.967	67.69	INDIANA	32.131 17.922	58.501	4.988	83.138	142.11						
KANSAS	103.749 124.360	15.028	397	9.202	61.24	10 HR	17.922	24.768 7.994	3.786 2.487	27,185	109.68						
kentucky	${ }_{62.029}$	12.799 20.911	282	5.915	46.24	KANSAS	9.107	10.393	3,127	10.832	135.50 125.28						
LOUISIANR	48.264	18.584	1.101	16.084	76.75 86.55	KENTUCKY	7.697	14.302	5.091	17.115	119.67						
Markich	19,943	8.723	1.199	5.416	62.09	HAINE	12.272 2.501	16.126 3.126	3.600	24.449	151.61						
hassachusetts	18.575	14.042	2.321	9.093	64.76	haryland	12.409	27.307	3.424 8.029	5.424 35.719	173.51						
MICHICPN	90.780	93.118	- 9.79	91.676	111.26	MASSACHUSETTS	21.017	37.840	4,939	56,987	150.60						
Hinnesota	114.641	18.528	443	91.554	95.28	MICHIGAN	26.765	48.817	4.997	57.327	117.43						
MISSISSIPPI	85.170	16.962	713	5.920	34.90	MISSISSIPPI	14.797 7.360	20.728	3.836	19.910	96.06						
HONTANA	106.022 88.492	24.976	645	17.793	71.24	Missouri	15.033	26.008	2,954 4.740	8.256 26.121	104.05						
negraska	87.707	8.932	279	2.366 4.772	38.03 53.43	HONTANA	2.275	2,093	2.521	3.148	150.41						
NEVADA	42.422	4.372	282	1.747	39.96	NEVAOA	4.961 3.156	5.163	2,851	10.515	203.66						
NEW HERSEY	12.435	6.263	1.385	3.244	51.80	NEW HAMPSHIRE	2.433	${ }^{6} \mathbf{3} 672$	5.328	10.275	167.40						
NEH MEXICO	50.407	11.747 10.242	2.735	12.782	108.81	NEH JERSEY	22.501	47.542	5.789	78.519	888.94						
NEH YORK	73.381	31.685	1.183	71.748	226.12	NEH MEXICO	5.669	${ }^{6.531}$	3.156	11.111	170.13						
NORTH CAROLINA	75.572	34.857	1,264	36,399	104.42	NORTH CAROLIMA	38.061	75.976	5.489	117.562	154.74						
NORİ	84.814 82.178	4.401 38.591	. 142	1.274	28.95	NORTH DAKOTR	19.572	30.026 1.550	4,203 2,345	33.892   2.058	112.88 132.77						
OKLAhohr	99.844	16.922	1.218	${ }_{7} 9.652$	88.64	OHIO	31,387	56.471	4.929	92.896	164.50						
ORECON	日6,944	13.995	441	5.434	98.83	ORECONM	$\begin{array}{r}12.417 \\ \hline\end{array}$	17.318	9.821	16.952	97.89						
Penhsylyamia	88.290	39.258	1.218	28.687	73.07	PENNSYLVANIA	28.3989	11.767 48.024	3.445   4.633	14.601	124.08						
SOUTH CAROLINA	54.523		1.756	382	39.14	RHODE ISLAMD	28.597	48.024	4.638	56.293	117.22						
SOUTH DAROTA	81.488	22.252 5.223	1.114	12.910 2.257	58.02	SOUTH CAROLINA	9.358	12,204	3.673	+6.514	105.42 130						
TENNESSEE	69.376	23.15 ¢	915	15.491	43.21 66.89	South oakota	1.751	1.488	2.328	2.573	172.92						
TEXAS	217.294 97.523	55.529	700	33.841	60.94	TEXAS	15.476 76.215	24.109 103.227	4.288 $\mathbf{3} 711$	91.304 127.629	129.64						
VERMONT	12.523 12.940	5.970 4.269	436 904	3.154 1.841	52.83	UTAH	5.632	-9,421	4.583	127.629 10.608	123.64						
viroinia	52.634	20.670	1.492	17.868	43.12 60.57	VERHONT	1.196	${ }^{1.601}$	3.667	1.252	76.20						
HESHINGTON	63.313	17.295	748	22.055	127.52	Mashington	15.409 16.589	32.429   29.154   1	5.786 4.821	30.325 26.993	93.51						
wisconsin	-95;820	11:363	984 687	11.769 15.554	103.34 88.92	WEST VIROINIA	3.089	29,643	4.818	26.953 5 5	92.59 120.20						
hYoming	36.717	24:019	${ }_{348}^{688}$	15:554	88.92 38.21	HISCONSIN HYOMINE	14.552	21.438	4.096	24.362	113.63						
						womine	1.980	1.358	1,879	1,572	115.76						
TOTAL	3,139,435	883.621	771	841.715	72.62	TOTAL	149.864	1-289.599									
age $1 /$ INCOMPLETE DATA WERE REPORTED BY A NUMBER OF STAIES; SOME RATES GRE EXTREMELY HIOH OR LOH AS A REEILI OF MINIHAL MILEAOE IN A OIVEN hzomary categoryi dther extreme rates apperr to result froh the over and						GIVEF HIOHHAY SYSTEMS.   UNDER RSSIGMMEMT OF MON-FATAL INJURY aCCIDENTS AND INJURED PERSONS TO   $2 /$ NONFRTPL INJURY ACCIOENTS PER 100 MILLION vEHICLE MILES.											




state	RRTERTAL					stare	COLLECTOR				
				fatalilies					$V^{\text {Peflity }}$ ${ }_{\text {PRIR }}^{\text {MILE }}$	fatalities	
				мumber	Rate -1					सunber	Rate $1 /$
	${ }_{\text {1,548 }}^{1.59}$	993		${ }_{107}^{107}$	2. 2.19		ci.259	${ }^{1.877}$	${ }_{\text {4, }}^{4.1048}$	${ }_{4}^{20}$	${ }^{1 / 97}$
	2.7.75	10.719		${ }^{212}$	1:27		${ }^{7206}$	, ${ }^{\text {99866 }}$	cose	13	${ }_{\text {a }}$
			, 17.813	1.515	(1.92	comer	5.086	7.717		$\begin{array}{r}109 \\ \hline\end{array}$	citit
cters	189	${ }^{495}$		179	(1.73	comer	,	2.329,		$\begin{array}{r} 25 \\ \hline 5 \end{array}$	(27
citisiol	${ }^{2}$ 2,0	18.745	coin	${ }_{4}^{49}$					(e.126	$\begin{array}{r} 5 \\ 39 \\ 39 \end{array}$	-
\%itanit			-15:7794	-	(1.37	${ }_{\text {con }}$	-	${ }^{487}$		7	1:4.4.
\%eation	). 9664	(12.20	cititers	${ }^{215}$	1:37	\%oter	- $3.1276{ }^{\text {a }}$			98	1:42
)	(1:463	come	5:572	$\underset{\substack{28 \\{ }_{24} \\ \hline \\ \hline}}{ }$	1.4.3	Hoter	- 9 ¢68	(1036	cois	近	2:14
	(1:369		cois	(	coin		¢	(1,055		${ }^{15}$	(1:25
Malicema	1.	(1.096	cisi.75	${ }_{5} 5^{6}$	0.:55			(1, 981		$\begin{aligned} & 12 \\ & 2.6 \\ & 2.6 \end{aligned}$	-
masshchuse	s:1		¢0.324	${ }^{165}$	1:66		¢ 5790			$\begin{aligned} & { }^{26} 8 \\ & { }_{20}^{5} \end{aligned}$	(1:72
Mimesoif	1.725		(10.450	${ }_{31}$	00.72		${ }_{7}^{70}$	${ }_{820} 5$	(2,	${ }^{16}$	1.385
M, ssoun	${ }^{1.942}$	8.760	, 1.2 .76	${ }^{143}$	+1:63 ${ }^{1 / 68}$		${ }^{505}$	$7{ }^{79}$	3.7209	$\begin{aligned} & 10 \\ & \\ & \hline 2 \end{aligned}$	${ }_{\text {d }}^{1.148}$
Neraskn	${ }^{456}$	2:840	\%8:920	${ }_{80}^{15}$	0.77	\#EERASKA	${ }^{105}$	${ }_{204}^{408}$	\% ${ }_{\text {3,274 }}$	$8$	1:24
NEEHRMPRESHIRE	9.534	-12:921	8:963	291	0:79	NEH HAMPSH	${ }^{1.337}$	2.935	cois	${ }_{5}{ }^{6}$	1:955
NEEL MExCl		-25:268	${ }^{13} 19.6895$	${ }^{49}$	1:820		9. 5136	${ }_{5}^{2.552}$	(	102	1:198
	(\%.766	10.562	10:422	${ }_{3}^{96}$	0.95	Nortit chro ing	${ }^{353}$	${ }^{410}$	92.155	7	+:67
	3.248	13.736	10.165		0.99	OKfichona	4.133 ${ }^{1756}$	6.793 76	4.503	${ }_{4}^{144}$	${ }_{\text {2 }}$
	3.208	\% 3 3:910	,	${ }^{50}$	ci:178		3. ${ }^{8.193}$	4.92e	3:828	${ }_{31}^{14}$	- ${ }^{1.168}$
		2:806	11:2993				$\begin{array}{r} 501 \\ 5012 \\ 102 \end{array}$			?	
-	18.6	- ${ }^{\text {85,8686 }}$	${ }^{10} 9$	${ }^{106}$	ci:5		${ }_{1}^{1.625}$	2.42i	${ }_{\text {a }}$	5	coil
Yuertow		${ }^{3} \cdot 146{ }^{136}$	15.085	${ }^{52}$	-	บerahont	${ }^{990}$	${ }_{\text {\% }}^{\text {917 }}$	2,011	${ }_{3}$	-
\%irolifo	2,		- 17.7080	117	1:10	Mircilig	${ }_{\text {c }}^{1.704}$		, 19.985	${ }_{33}^{31}$	1:45
	- 2.1070	$\begin{aligned} & 8: 595 \\ & \hline: 595 \\ & \hline 952 \end{aligned}$		${ }_{4}^{29}$	$\begin{aligned} & \text { and } \\ & 1065 \\ & 1.56 \end{aligned}$		$\begin{aligned} & 0,025 \\ & 323 \end{aligned}$	$\begin{gathered} 5095 \\ \hline 845 \\ 230 \end{gathered}$		${ }_{6}^{12}$	越:61
total	92.829	402.831	11.915	в.480	1.81	total	${ }_{55} .259$	82.050	4.068	1.07	1.31

TABLE 5-D. FATALITIES
BY STATE AND HIGHWAY SYSTEM • 1991
FEDERAL-AID sECONDARY SYSTEM

STATE	MAJOR COLLECTOR				
	HIGHWAY MILES	$\begin{gathered} \text { VEHICLE } \\ \text { MILES } \end{gathered}$	$\begin{aligned} & \text { DAILY } \\ & \text { VEHICLE } \\ & \text { MILES } \\ & \text { PER MILE } \end{aligned}$	FRTALITIES	
				NUMBER	RATE 1/
ALABAMA	11.648	4.488	1.056	230	5.12
ALASKR	11.648	4.428	651	22	5.14
ARIZONA	3.238	2.871	2.429	89	3.10
RRKANSAS	7.389	2.120	786	105	4.95
CALIFORNIA	11.192	10.309	2.524	502	4.87
COLORADO	3.427	1.322	1.057	58	4.39
CONNECTICUT	879	1.378	4.295	23	1.67
DELANARE	604	629	2,853	16	2.54
DIST OF COL. FLORIDA	4.359	2.961	1.861	111	-3.75
FEORGIA	4.359 14.012	2.961 6.444	1.861 1.260	233	3.75 3.62
HAWAII	- 435	583	3.672	19	3.26
IDAHO	4.182	1.153	755	51	4.42
ILLINOIS	12.942	4.305	- 911	155	3.60
INDIANA	9.759	8.363	2.348	196	2.34
I OWA	13.576	2.575	520	86	3.34
KANSAS	22.643	2.687	325	-99	$3 \cdot 68$
KENTUCKY	7.226	5.148	1.952	219	4.25
LOUISIANA	7.329	5.412	2.023	224	4.14
MAINE	2.742	1.783	1.782	41	2.30
MARYLAND	1.922	2.373	3.383	77	3.24
MASSACHUSETTS	2.007	1.637	2.235	25	1.53
MICHIGAN	17.080	10.859	1.742	272	2.50
MINNESOTA	16.650	3.698	608	121	3.27
M1SSISSIPPI	11.699	3.514	823	153	4.35
MISSOURI	18.069	5.451	827	209	3.83
MONTANA	4.737	. 632	366	24	3.80
NEBRASKA	11.456	1.277	+305	43	3.37
NEVADA	2,314	915	1.083	45	4.92
NEW HAMPSHIRE	1.235 1.703	1.250 2.557	2.773 4.114	25 71	2.00 2.78
NEH MEXICO	3.645	1.228	923	52	4.23
NEW YORK	6.296	5,589	2.432	167	2.99
NORTH CAROLINA	10.329	11.403	3.025	287	2.52
NORTH DAKOTA	10.596	776	201	18	2.32
OHIO	11.790	9.240	2.147	200	2.16
OKLAHOMA	11.775	3,994	929	109	2.73
ORENNSYIVANIA	7.781	2.632	. 927	95	3.61
RHODE ISLAND	7.992	6.177 158	2.118 2.154	188	3.04 3.80
SOUTH CAROLINA	8.536	5.085	1,632	196	3.85
SOUTH DAKOTA	11.091	928	229	29	3.13
TENNESSEE	5.450	3.223	1.620	146	4.53
TEXAS	32.705	13.931	1.167	444	3.19
UTAH	2.724	. 864	-1669	25	2.89
VIRGINIA	1.913 10.208	1.079 6.677	1.545 1.792	211	2.32 3.16
WASHINGTON	7.376	5.253	1.951	121	2.30
WEST VIRGINIA	6.353	3.483	1.502	124	3.56
WISCONSIN WYOMING	13.036 2.264	4.625 499	972 604	120 13	2.59
TOTAL	400.315	185.966	1.273	6.120	3.29
$1 / \mathrm{FATALITIE}$	100 MILL	HICLE MILE			

TAELE 5*E, FATALITIE8

state	RURAL					state	urban				
	${ }_{\text {Mrathay }}^{\text {M }}$	$\begin{gathered} \text { VEHICLE } \\ \text { MHLEBOMS } \end{gathered}$	MILES   PER MILE per mile	fatalities			HIOHACY	$\begin{aligned} & \text { VEHILLE } \\ & \text { MLLEBS } \\ & \text { MILIONS } \end{aligned}$	OAILY VEHICLE   MILES   PER MILE	fatalities	
				нüber	Rate $1 /$					munber	Rate 19
RLabana						RLLRE日MA	${ }^{211}$	${ }^{215}$			${ }_{8}^{0.93}$
- ALASKA		- 17	5.822	- 0	0.00	\%LASMA	${ }^{11}$	240	+12,204	0	8.16
(ARKANSAs	${ }^{380}$	308 29	2.934 4.988	18	8.17 0.00	(RRKANSAS	1.2438   1.298	3, 3038	3.208   7.280	${ }_{50}^{18}$	3.43
coioramo	26		+105	0	0.00	COLORAOD	- ${ }^{8}$		\% 2.740	1	12.50
OELLMARE	$-{ }^{-9}$					DELEMARE		13	95.616	${ }^{1}$	\% 5.00
		1.409	10.967	52	3.69	OLSORTOF	974	$2.420^{4}$	17.728	${ }^{94}$	50.00   1.40
(emoria						${ }_{\text {cemer }}^{\text {ceoraia }}$ HRMAII					
toma			0.219	0	0.00	${ }^{\text {IOPHO }}$	${ }_{3}^{47}$	118	¢,8788	2	1.69
ILlinors			1.370		0.00	LELNOTS	- 19	89	3.084	$\begin{aligned} & 2 \\ & 1 \\ & 0 \end{aligned}$	5.139
		- 1	913		0.00	${ }_{\text {KRNSAS }}$	214	859	5.675   8.959	$0$	(0.00
KENTACKY	- 31		${ }^{-980}$		0.00 0.00	KESTUCKY LOUISINMA	292	$\mathrm{Cl}_{2}$		$\begin{aligned} & 8 \\ & 0 \\ & 4 \end{aligned}$	
MGINE			8.219	1	33.33	Lealke	${ }^{29} 2$	${ }^{6} 5$		$\begin{aligned} & i \\ & 0 \\ & 0 \end{aligned}$	5. 0.00 0.00 0.00
Marylayb	-	-	-	-	-	Marstand mictis	${ }^{1}$	${ }^{23}$	5.913	$0$	0.00
Hichican						Hichiean	$\stackrel{87}{87}$	2.473	10.082	${ }_{0}$	0.16
Hississip i	279	105	1.091	2	1.90	Misisisif	14 503 503	${ }_{1}{ }^{20} 20^{19}$		${ }^{0} 5$	0.00
	*3		-174	1	25.00	HONTAM	593	1.297	7:899	${ }_{2}$	7.41
MEERASKA	-		-			Nebraska					7.35
мEM HAMPshire	21		${ }^{93} 5.528$		0.43	¢EH HAPPSHIRE	${ }^{26}$	9. 1878	19,005	0	0.00
NEH JERSEY	${ }_{5}^{124}$	1	- 33.548	0	0,00	NEEH MEXICO			S4.529	$\begin{gathered} 24 \\ \mathbf{a} \\ 0 \end{gathered}$	
NEM YORK	257	158		2	1.27	NEMRTH CAROLINA	${ }_{820}$	1.939	16.478	8	0.41
north dakota	${ }^{2}$	-	1.370								
OXLLHOMA	${ }_{81}^{282}$	${ }^{398}$	3,8947	7	1.77		${ }^{181} 8$	170 49	2,7993	0	0.00
									こ		
	- ${ }^{3}$	2	1,828	-	0.00	SOUTH CRROLINA	259	440		21	4.77
South dakota	- ${ }^{14}$	$-1$	$-^{198}$	0	0.00	South dakota			4.568	0	0.00
	39	${ }^{2} 2$	${ }^{1.828}$	${ }_{2}$	$\xrightarrow{250} 11.78$	(ExAS	1:787	8.342	9.723 $\mathbf{3 . 8 4 9}$	25 1	0.79 1.69
Sermonta	2.534			0		${ }_{\text {Yermont }}$					
VIn	2.534	$\because$		-		MASSHINGON		47	2. $\begin{array}{r}14.7307 \\ \substack{\text { 2,740 }} \\ \hline\end{array}$	0	0.00
$\begin{aligned} & \text { MEST VIRO } \\ & \text { HISCONSIN } \end{aligned}$ $\begin{aligned} & \text { Hisconsi } \\ & \text { WYOHINO } \end{aligned}$	253	15	$\underset{\substack{2.740 \\ \hline 82}}{ }$	-	0.00 0.00	WISCONSIN hyomino		$\stackrel{4}{1}$	2,581	${ }_{0}$	4.65
Total	4.790	4.554	2.605	122	2.88	total	7.888	26.977	9.278	251	0.93
$1 /$ fatalitie	PER 100 Mr	Ion vehicle	miles.								

table 5-f. fatalities by state and highway system - 1991
NONFEDERAL-AID COLLECTOR SYSTEM



\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Irate} \& \multicolumn{5}{|l|}{RURAL} \& \multirow[t]{3}{*}{state} \& \multicolumn{5}{|l|}{URBPN} \\
\hline \& \multirow[t]{2}{*}{MBRMMAY
MRES} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& \text { VEMICQE } \\
\& \text { MHLLEDOMS }
\end{aligned}
\]} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& \text { VALY } \\
\& \text { WHICLE } \\
\& \text { MELES } \\
\& \text { PETKE MLE }
\end{aligned}
\]} \& \multicolumn{2}{|l|}{Patal ETiEs} \& \& \multirow[t]{2}{*}{HGHMAY
MILES} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& \text { VEHICLE } \\
\& \text { MKLESTONS }
\end{aligned}
\]} \& \multirow[t]{2}{*}{\begin{tabular}{l}
orily \\
VEHICLE MILES PER MILE
\end{tabular}} \& \multicolumn{2}{|l|}{FATALItIES} \\
\hline \& \& \& \& munaer \& RATE \(1 /\) \& \& \& \& \& NUMBER \& Rate \({ }^{\text {l/ }}\) \\
\hline 由LABAMA \& 48.888 \& 9.910 \& 220 \& 329 \& 9.15 \& alagamm \& 22.263 \& 4.888 \& 1.043 \& \& 0.98 \\
\hline ALASKA
GRIZONA \& \({ }^{70.1988}\) \& 469
8.718 \& 179
855 \& 120 \& \% 8.498 \& Mafisk \& 1.170
10.323 \& 4, 938
\(\mathbf{3 , 3 9 2}\) \& \& 37 \& 2.88
1.09 \\
\hline ¢RKANSAS \& 98.888 \& 8.117 \& 88 \& 58 \& 5.19 \& ARKAMSAS \& 4.817 \& 3.344 \& 966 \& 4 \& \({ }_{0}^{1.69}\) \\
\hline cal formia \& 57.308 \& \%.412 \& 116 \& 278 \& 11.53 \& crai ifornim \& 60.478 \& 14.213 \& 771 \& 282 \& 1.98 \\
\hline COLOAPDO \& 42.517 \& \({ }^{634}\) \& 34. \& 55 \& 10.30 \& colorano \& 7.785 \& 1.838 \& 578 \& 17 \& 1.04 \\
\hline COMAECTICUY \& 8.252
2.775 \& 388
488 \& 480 \& 1.5 \& \({ }_{3}^{0.73}\) \& conmecticut \& 6.987
1.161 \& 1.721 \& \(\begin{array}{r}677 \\ \hline \text {, } 753\end{array}\) \& 28
2 \& 1.63
0.27 \\
\hline OLSTi ar col. \& \& \& \& \& \& pist of col. \& -659 \& 2035 \& 1.488 \& 7 \& 1.98 \\
\hline PLORIOA
OEOROTA \& 44,858 \& 3.959
4.503 \& 200 \& 365
152 \& 11.20
3.38 \& flerioh \& 37.740 \& 20.282
7.208 \& 1.472 \& 418 \& 2.08 \\
\hline GAMAII \& 1.618 \& 659 \& 1.115 \& 14 \& 2.12 \& hamail \& 16.025 \& 1,029 \& 2.750 \& \({ }^{12}\) \& 0.58 \\
\hline IDAmo \& 47.332 \& 1.970 \& 114 \& 45 \& 2.28 \& ГОСНО \& 1.635 \& 437 \& 732 \& \({ }^{5}\) \& 1.14 \\
\hline  \& 78.987
48.980 \& 3.482
2.520 \& 124 \& \({ }_{1}^{125}\) \& 8.59 \& Llimots \& 22.628
11.955 \& 7.052
4.330 \& 854
992 \& 124
48 \& 1.78
1.02 \\
\hline 10 MA \& 85.085 \& 1.483 \& 62 \& 50 \& 9.42 \& [06A \& 5.407 \& 1,055 \& 535 \& 18 \& 1.52 \\
\hline KAASAS \& 89.808 \& - \({ }^{\text {P }}\). 5781 \& 51 \& \({ }_{79}\) \& 3.50 \& \%RMSAS \({ }^{\text {K }}\) \& 8.469 \& 1.713 \& 725 \& 25 \& 1.48 \\
\hline KEATUCKY \& 41.487

31.307 \& 2.588
2.438 \& 170
213 \& 79
100 \& 3.08
4.11 \& KENTUCKY \& 4.922
8.800 \& 1,745
1.976 \& 971
815 \& 23
50 \& 1.32
2.53 <br>
\hline MAIME \& 12.277 \& 1.002 \& 224 \& 33 \& 9.29 \& MAINE \& 1.520 \& 240 \& 433 \& 3 \& 1.25 <br>
\hline Paititand \& 20.887 \& 1.325 \& 331 \& 58 \& 4.38 \& MARYLAND \& 8.959 \& 1.798 \& 550 \& 47 \& 2.61 <br>
\hline MRSSACHISETTS \& 8.867 \& 2.049 \& 950 \& 38 \& 3.45
5.48 \& Massachusetts \& 13.357 \& 5.317 \& 1.091 \& 99 \& 1.86 <br>
\hline WTMEESOT \& \%99.881 \& 2,600
2,445 \& 127 \& 53 \& S.
2.17 \& MINEESOTA \& 19.087
10.261 \& 2.721 \& 727 \& $\begin{array}{r}104 \\ \\ \hline 9\end{array}$ \& -1.83 <br>
\hline Mississippl \& 44.287 \& 3.959 \& 245 \& 87 \& 2.45 \& Mississippl \& 5.156 \& 1.785 \& 948 \& 17 \& 0.95 <br>
\hline Missours \& 76.207
48.108 \& 3.408 \& $\begin{array}{r}124 \\ 4 \\ \\ \hline\end{array}$ \& 107 \& ${ }^{9} 9.14$ \& Mossitauri \& 10.274 \& 2.477 \& ${ }^{681}$ \& 25 \& 1.01 <br>
\hline WEBRASKA \& 59.642 \& 1.252 \& 58 \& 48 \& 3.83 \& nebraska \& 9.599 \& 707 \& - 538 \& 4 \& 0.57 <br>
\hline HEVAOR \& 35.352 \& 305 \& 24 \& 12 \& 3.83 \& NEVADA \& 2.126 \& 593 \& 764 \& 19 \& 2.19 <br>
\hline NEEH MRMPSHITE \& 8.803
7.712 \& ( ${ }_{948}$ \& 189
934 \& ${ }^{18}$ \& 2.94
2.34 \& New Hampshire \& ${ }^{15} \mathbf{1 5 . 4 7 2}$ \& 10.6582 \& 1.850 \& 50 \& 1.55
0.47 <br>
\hline NEH MEXICO \& 39.314 \& 2.272 \& 158 \& 98 \& 8.72 \& NEH MEXICO \& 4.477 \& 1.189 \& 715 \& 16 \& 1.37 <br>
\hline NEW YIRX \& 48.994
51.885 \& 3.429 \& 182 \& 125
255 \& 3.85 \& NEM YORK \& 26.099
13.749 \& 8.221 \& 863 \& 157 \& 1.91 <br>
\hline NMORTH CAROLIMR \& 81.285
60.280 \& 3.398 \& 181 \& ${ }_{18}$ \& 7.51
2.34 \& NORTH CAROLTA \& 13.749
1.719 \& \& 1.465 \& 210 \& 2.88
1.38 <br>
\hline OH 10 \& 57.448 \& 0.151 \& 293 \& 289 \& 4.70 \& OHIO \& 21.220 \& 10.355 \& 1.337 \& 216 \& 2.09 <br>
\hline OKLAMOMA \& 89.469
84.841 \& (1.884 \& 74 \& 198

29 \& 7.22 \& OKLAMOMA \& 6.170

8.610 \& | 3.349 |
| :--- |
| 1.278 | \& 1.123

530 \& 35
13 \& 1.05 <br>
\hline PEMMSYLYPMII \& 82.988 \& 8.502 \& 239 \& 171 \& 9.11 \& pennstlvania \& 18.751 \& 5,893 \& 881 \& 148 \& 2.51 <br>
\hline RHODE ISLAMS \& \& \& 75 \& ${ }^{3}$ \& 11.11 \& RHODE ISLAND \& 3.344 \& 828 \& 878 \& 4 \& 0.48 <br>
\hline  \& 38.548
58.897 \& $\begin{array}{r}2.197 \\ \hline 551\end{array}$ \& 165
27 \& 14 \& 8.42
9.27 \& SOUTH CAROLINA \& 3.465 \& 709
288 \& 301
622 \& \& 3.39
0.37 <br>
\hline TEMPESSEE \& 47.098 \& 1.650 \& 96 \& 113 \& 8.85 \& TENHESSEE \& 11,071 \& 3.275 \& 810 \& 88 \& 2.08 <br>
\hline TEXAS \& 149.270 \& 4.146 \& 79 \& 309 \& 7.45 \& TEXAS \& 57.937 \& 21.383 \& 4.010 \& 890 \& 2.78 <br>
\hline VERMONT \& ${ }^{6} .711$ \& 479 \& 151 \& 20 \& 4.18 \& VERMONT \& 730 \& 971 \& 1.392 \& 1 \& 0.27 <br>
\hline viroinif \& 94,887 \& 3.257 \& 261 \& 84 \& 2.58 \& Girainia \& 10.875 \& 5.522 \& 1.391 \& 45 \& 0.81 <br>
\hline HEST VIROINSA \& 44.508
20.500 \& 1.218 \& 129 \& 48 \&  \& WASHINGTON \& 11.391
1.972
1 \& $\begin{array}{r}3.205 \\ \hline 146\end{array}$ \& 771
820 \& 29 \& 0.90
1.57 <br>
\hline (Misconsin \& 68,882
22.811 \& $\begin{array}{r}2.3955 \\ \hline 940\end{array}$ \& 96
41 \& ${ }^{347}$ \& 8.14
1.78 \& Hisconsin
wromine \& 9.867
1.236 \& 5.152 \& 1.431
357 \& 22 \& 0.43
0.82 <br>
\hline TOTAL \& 2,148,928 \& 86.154 \& 125 \& 4.445 \& 4.53 \& rotal \& 528.122 \& 180,985 \& 981 \& 3.263 \& 1.73 <br>
\hline 1 C Fatalities \& EA 100 MIL \& Iow vehicle \& Les. \& \& \& \& \& \& \& \& <br>
\hline
\end{tabular}

9tate	RURAL					state	urbam				
	${ }_{\text {Mrathes }}^{\text {M }}$	$\begin{gathered} \text { VEHICLE } \\ \text { (MLLESONS) } \end{gathered}$	DAILCVEHILEMite PER MILS PER WIL	fatalities			H1gHLMAY	$\begin{aligned} & \text { VEH1CLE } \\ & \text { MILES } \\ & \text { (MLLIDNS) } \end{aligned}$	VAILY PER HILE	fatalities	
				number	RATE 1／					MUMBER	RATE $1 /$
RLLABAMA	（79．639	22，577	838	${ }_{769}$	${ }^{3.54}$		18．885	${ }_{20}^{20.947}$	3，905	${ }_{31} 9$	¢
					2．76		1,561 14.170 1	1.970 21.327 2	9，054	388   294   1	
RRKRNSAR		14.079   $\mathbf{5 5 . 0 9 4}$  	1.555	\％ 1.907	9． 9.50	（RRKANSAS	74．647	－7，855	${ }_{7}^{2,428}$	2.751	（1．39
Colileranta	\％80．033	年．094	1.658	1．930 95	3． 10	california	71：341	202．885	3．934	2．158	（1．15
ConNecticut	9．160 ${ }_{\text {9，869 }}$	¢ ${ }_{2}^{6.715}$	2．008	${ }_{61}^{87}$	1．30	CONNECTICUT	${ }^{10.964} 1.643$	19，913	${ }_{8}^{4.976}$	${ }^{229} 4$	1.07
	81.827	32，904	1.183	1.184	9.54		${ }^{47.1027}$	－ $\begin{array}{r}3,490 \\ \text { 80，} 579\end{array}$	8.527 4.824		1.84
OEOROIR	88：4．45		${ }_{\text {c }}$	${ }_{86} 86$	2．54	ceoroia	22：057	－ 38.559		${ }^{519}$	（1．35
NMARHI	599871	2，	3．932 ${ }^{328}$	228	年：22	tapho	－ 2.738		9，209	${ }^{39}$	（1．09
clelinars	104,040 14.107		2．009	874   708	2．50	Tlicinots	32,131 17.922 18		4．7868	774	（1．32
	109．749		${ }_{292} 9$	385	年．56	LOMA	$\xrightarrow[\substack{8.805 \\ 98 \\ \hline 107}]{ }$	7．9994	${ }^{2} 9.487$	109	1.29 0.90
Kentick	124.360   882,029   180	12，793	（292	${ }^{3158}$	2．48	KENTTCKY	${ }_{7}^{7.697}$	14．902	S． 0991	188	1.17 1.59
LAOINE	98．264 ${ }^{49}$	${ }^{18.5894}$	1：101	－ 599	9．22	havisiana	12.272 2.501	16．128	9．600	${ }^{251}$	${ }^{1} .699$
Mrertagn	16.575   19.306   108	14．042	$\underset{\substack{2.321 \\ 1.791}}{1}$	314   125	（2．24	Martiamd	12.409 21.017 21	27，307	8．0．029	980	${ }^{1.93}$
nichtorm	90．780	－33．118	${ }^{299}$	734	2.22	hithican	26.765	48.817	4.997	${ }^{874}$	
${ }_{\text {Mi N }}$	11.4641	\％ 18.528	443	${ }^{391}$	2．06	HINNESOTP	14．797	${ }^{20} 7.728$	3．${ }^{\text {P393 }}$	${ }^{150}$	0．72
missisurt	${ }^{1050.022}$	－ 24.976	845	898	2.79	Missouri	15.033	26：008	2．970	919	1.20
M Mowtang	87\％．4929	8，221 8.932	${ }^{249}$	${ }_{2}^{180}$	2．89	HONTANA	$\xrightarrow{2.275}$	2.093 5.163	2.521 2.851	${ }_{44}^{20}$	${ }^{0.96}$
		${ }^{4} 8.972$	${ }_{282}^{288}$	${ }^{189}$	${ }^{4} 1719$	MEVMOA			5．328	114	（1．86
Neh Maptice			2．735	22e	1.94	NEEN HRRSEY：	22，550	47.542	5	S566	1.17
NEH MEXICO	50，407	${ }_{31}^{10} 0.685$	－ 1857	－ 721	3．54	NEH MEXCO		－${ }^{\mathbf{8} 5.951}$	3.156 5.469	． 288      108	（1．62
Horth carolime NORTH DakOTR	75．5．52	34， 545	1． 2684	${ }_{989}^{950}$	（	North carolima	19．572	${ }^{30} 0.026$	¢，	419	1．40
OHIO	矿，	${ }^{36} 8.5081$	1.218	921	2．99	OHIC	31．387	56．471	－	${ }^{124}$	（28
OKL ${ }_{\text {OREBOM }}$	－99．044	－ 19.9895	${ }_{441}^{464}$	${ }^{473}$			12，417	17．9787	3， 3.421	178 123 129	1：03
PEHSVIVMANIA RHODE ISLAMO	88．230	${ }^{93}$ ． 2576	${ }^{1} 1.758$	987	2．51	PENRSYLYANIA	－ 28.59898	${ }_{\substack{48 \\ 8.024 \\ 8.178}}$	4；833	${ }_{71} 6$	1.40 1.15
（entem	${ }^{5} 5.724$	22．252	1．118	899	9．18	Sout cancilm		${ }_{12}{ }^{\text {c／204 }}$		191	－ 1.57
South amata	\％1，486		（178	${ }^{159}$	2．19	Soun ofkota	$\begin{array}{r}1.51 \\ \hline 15.76 \\ \hline\end{array}$	－${ }^{1.4888}$	2.328 4.268	974	－
texas	217．294	55．679	${ }_{736} 700$	1.5881	2．81	texas	${ }_{78}^{78.235}$	103．227	3．711	1.519	1．47
VERTHT			${ }_{\text {939 }} 9$	968	2．20	VERMONT	citile	\％ 1.6001	¢ ${ }_{\text {S }}$	${ }^{18}$	（100
Hashinatom		28.879   17.295	1.4888	－683		YIROHMI	－15，689	39．154	4．821	260	0.82
（mest yiroinia		＋11．3839	8884	942 651	3．00	mest irironia	14：5092	4.883 21.439	4，116	148   148	${ }^{1.68}$
wrohine	98.717	4，640	348	104	2.24	WYOhtma	1.980	1，958	1．879	18	1.33
rotal	3，1996495	803．821	771	24.419	2.76	TOTRL	749.884	1．288．593	4.708	17.049	1.32


STATE	RUPAL					State	URBAN				
	HIOHARYMILES	$\begin{gathered} \text { VEHICLE } \\ \text { MILES } \\ \text { (HILLIONS ) } \end{gathered}$	$\begin{aligned} & \text { DAILY } \\ & \text { VEHICLE } \\ & \text { MILES } \\ & \text { PERMILE } \end{aligned}$	NONFATALLY   INJURED PERSANS			highmay MILES	$\begin{gathered} \text { VEHICLE } \\ \text { MILES } \\ \text { MILLIONB } \end{gathered}$	$\begin{aligned} & \text { DAILY } \\ & \text { VEHICLE } \\ & \text { MILES } \\ & \text { PERMILE } \end{aligned}$	NONF ATPLLYINJURED PERSONS	
				Mumber	RATE 21					number	RATE 2/
9labama	644	4.515	19.208	1.183	26.20	ALABRMA	255	3.737			
ALASKA	1.036	7.701	1.850	1.735	104.85	ALASKA	51	3.737 430	23.100	482	26.28 105.35
ARIZONA	1.039	5.014	13.221	2.494	49.74	ARIZONA	130	2.939	61.939	1.855	63.12
GRKANSAS	1.419	2.830 14.754	18.505 28.587	5. 550	19.43 40.50	ARKANSAS	123	1.780	99,648	. 729	40.96
CALIFORNIA	1.4159	14.754	28.587 12.451	5.975 2.115	40.50 58.68	CRLIFORNIA	984 150	51.191	142.530 65.041	25.361 2.997	49.54 84.16
CONNECTICUT	109	1.421	95.717	405	28.50	CONNECTICUT	232	8.394	75.509	3.409	53.32
DELAMARE						OELAWARE	41	- 972	64.952	+450	46.30
FISORIOAF COL.	1.022	9.115	24.435	9.105	94.06	OIST. OF COL.	12	4437	99.772	407	93.14
OEOROIA	8.87	9.013	28.285	2.328	25.83	GEOROIA	422	11.186 10.099	72.492	6.914	61.92 82.20
Hayali	5	102	55.890	67	65.69	няhali	38	1.386	99.928	1.243	89.68
[DAHO	539	1.543	3.931	758	49.13	1 10AHO	74	. 598	22.140	. 253	42.31
ILLIMOIS	1.415	7.723	14.953	2.369	30.67	ILLINOIS	547	14.374	71.994	10.163	70.70
[NDIANA	803 644	6.943 3.307	22.042	2.320	33.41	INOIANA	274	5.104	51.035	992	19.44
KONA	684 712	3.307 2.550	14.069 9.812	794	22.20 31.33	IOMA	$\begin{array}{r}138 \\ 180 \\ \hline\end{array}$	1.379	27.377	598	43.38
KENTUCKY	579	4.827	22.841	1,267	26.25	KENTUCKY	180	2.020	34.589 54.303	1.181	58.47
LOUISIRAM	657	4.481	18.686	1.991	44.43	LOUISIANA	187	3.559	52.143	9.331	46.78 93.59
MAINE	313	1.694	14.828	586	34.59	HAINE	53	4.49	23.210	315	70.16
MARYLAND	241	3.175	96.139	798	25.10	maryland	240	8.432	96.256	4.405	52.24
MASSACHUSETTE	170	2.098	33.811	1.251	59.69	MRSSACHUSETTS	397	10.417	71.888	4.8051	48.76
MICHIGAN	783	5.782	20.231	3.129	54.12	MICHIGAN	455	11.413	68:722	7.060	61.86
HINNESOTA	881	2.994	12.045	798	26.65	MINNESOTA	230	5.060	80.274	2.242	44.31
MISSISSIPFI	560	2.777	13.586	572	20.60	MISSISSIPPI	124	1.292	28.546	616	47.68
MONSOURI	1.842	5.570 1.796	18.145 4.301	1.868 832	33.54 46.33	HISSOURI HONTANA	336	8.083	65.908 9.678	5.529	68.40
NEBRASKA	444	1.946	12.008	610	31.35	MEBRASKA	37	168 640	47.390	65 497	39.18
NEYPDA	499	1.572	8.631	828	52.67	NEVRDA	48	1.001	59,619	1.391	138.96
MEH HAMPSHIAE	180	1.363	20.746	347	25.46	MEH HAMPSHIRE	44	. 672	41.843	120	17.86
WEH JERSEY	131	2.190	45.801	- 381	17.40	NEH JERSEY	275	8.183	81.524	5.257	64.24
NEW YORK	858	6.666	18.135	1.683 2.590	48.75 45.71	NEW MEXICO	643	1.090 13.854	32,111	784 10.946	71.93
NORTH CAROLIMR	703	6,801	26.505	3,005	44.18	NORTH CAROLIWA	251	13.854	48,122	10.946 1.239	79.01
MORTH DAKOTA	630	949	4.906	220	23.18	NORTH DAKOTA	40	+181	12,397	1.257	27.89 31.49
OHIO	847	7.945	25.699	2.828	35.59	OHIO	726	15.563	58,730	12.037	82.48
OKL PhOHA	723	3.620	13.718	1.188	32.82	OKLAHOMA	207	3.282	43.439	2.620	79.83
OREOON	595	3.698	17.028	787	21.28	OREDON	132	2.872	59.610	1.728	60.17
PENMSYLVANIA	1.186	8.027	18.861	2.469	30.76	PENNSYLYANIA	422	7.764	50.406	3.608	46.45
RHODE ISLAND	81	5.256	33.399	\% 5	20.31	RHODE ISLAND	49	1.408	78.613	852	60.60
SOUTH CAROLINA SOUTH OAKOTA	673 832	5.818	23.685	1.088	18.70	SOUTH CAROLINA	125	2.207	48.373	1.021	46.26
TENNESSEE	780	1.372	23.786	1.945	33.18	SOUTH DAKMTA	288	5. 223	13.282	. 141	63.23
TEXAS	2.288	12.134	14.542	5.049	41.61	TEXAS	943	23.311	67.726	29.220	125.35
UTAH	792	2.431	8.409	1,374	56.52	UTAH	146	2.871	69.875	1.450	50.51
YERHOMT	286	7999	9.570	260	26.03	VERMONT	34	245	19.742	. 52	21.22
Viroinia	777	7.300	25.740	1.818	24.90	VIROINIA	299	8.158	74.751	3.333	40.86
MASHINGTON	520	3.755 2.838	19.784 16.965	1.508	40.16	WASHINOTON	242	7.554	85.633	5.469	72.30
Hisconsin	516	4.055	21.530	1.0403	38.81	WESISCONSIN	192	1.175	58.961	+ 6735	57.28 50.85
hYoming	663	1.752	5.562	1.024	58.45	UYOMINO	50	2.655 163	8. 8382	1.350	59.51
TOTAL	33.677	205.011	16.676	72.999	35.58	TOTAL	11.603	285.325	67.372	182.561	63.98
I/ IMCOMPLETE DATA HERE REPORTED GY A NUMEER OF STRTES: SOME RATES ARE EXTREMELY HIOH OR LOH AS A RESULT OF MINIMAL HILEAOE IN A OIVEN HIOHMAY CATEOORYI OTHER EXTREME RATES APPEAR TO RESULT FROM THE OVER AND						UNDER ASSIGNMEMT OF MOH-FATAL INJURY ACCIDENTS AND INJURED PERSONB TO GIVEN HIOHHAY SYSTEMS.   2/ NONFATAL IMJURY RCCIDENTS PER 100 MILLION VEHICLE MILES.					

FEDERAL-AID PRIMARY SYSTEM - NONINTERSTATE

state	RURAL					state	URBAN				
	HIOHMAY	$\begin{gathered} \text { VEHICLE } \\ \text { HHLES } \\ \text { IHLLLOWS } \end{gathered}$	DRILY   vEHCLE   EHEHILLES   PER MILE PER	NONFATALLYINJURED PERSONS			${ }_{\text {H1PMuAY }}^{\text {Hites }}$	VEHICLEMHILESENS)IMLION	VEALLY MILES PER MILE	MONFATALLNURED PERSONS	
				number	RATE 21					number	RATE 2/
${ }^{\text {ALARA日 }}$	5.882	544	3.980	7.355	${ }^{86} 908$	$\stackrel{\text { AL }}{ }$	${ }_{6} 89$	4.870	14.723	4.0936	${ }^{87} 771$
					73.99 12125 12.259 72.69		69   89   489				+187.77
¢RKANSA	4.758	- 5.785	- ${ }_{8}^{\text {3.732 }}$	${ }^{4}{ }^{4} \cdot 11828$	72.69	ARKANSAS	1.5787	99,609	(13.102	- 31.7978	+83.31
Colordaic	3.822		$\xrightarrow{3,024} 9$		74.87 98.37	${ }^{\text {cololoraio }}$ CONUETICUT	(635	4.792		\%6.588   7.906	140.41   188.72      18
CONMECHICUT	$\begin{array}{r}712 \\ -34 \\ \hline\end{array}$	${ }^{2} 1.340$	13.0964	-	98.37   6.42	CONTECLICUT	582	4.742	-22.363	1.963	-
	5.742	14.098	6,727	13.550	96.11	FLoriof	$\begin{array}{r}1.380 \\ \\ \\ \hline 1800\end{array}$	20:669	- 2.0 .0980		
¢ ¢iorria	${ }^{\text {a. }}$ 3180	12.422	3.950 9.406		102.03 113 13	\%erorgia	${ }_{\text {121 }}^{1.571}$	9.847	17.173   33760	${ }^{23} \mathbf{2 3 . 9 3 8 8}$	297.01
tohel					17.49 92.92 98	Hopho	- ${ }^{866}$	$\begin{array}{r}1.488 \\ 14.028 \\ \hline\end{array}$	-19:571		- 162.44
	(	10.005	3.4965	9	${ }^{96} 96.67$	INLINOM	2.058	$\begin{array}{r}14.628 \\ \hline 820 \\ \hline\end{array}$	- 18.798	\% 7.679	${ }_{166} 16.21$
${ }_{\text {come }}^{\text {tows }}$	8.705	${ }_{5}^{8.680}$	2.358   2.019	4.410 3.217		${ }_{\text {KRKSAB }}$	714	2.403   1.597	9.221	5.910	245.94 195.18
KEETIUCKY	, 3.368	8.188	5.020	6, ${ }_{\text {6, }}$	- 110.52	KENTUSY	473	2, 2.85	16.548		214.21
Lhilise	-	${ }^{\mathbf{4}, 293}$	4,948	S. ${ }_{\text {3 }}$	1084.42	Lhine	188	9.921	113:422	3,078	334.20
Marslando mith	1.5	c.e.s.	11.174     		103.18		1.1959		92.950 $\substack{\text { 20, } \\ \text { 203 }}$	13.510	201.67
Hichieas	¢, 6.258	(12.071	5.285		(136.38	MICHICAN	974	7.987		15.529	194.43
${ }_{\text {MIISSISSITPPI }}$	-	${ }_{\text {c, }}^{8.323}$	$\xrightarrow[\substack{2.836 \\ 3.140}]{\substack{\text { a }}}$	5.507	-94.30				-13.690	5, ${ }^{1}$	134.62 216.09 218
Missomit	8.461	- 10.135	4.298   $\substack{390}$   3	6.917	${ }^{88} 8.25$	missouri	549	9.599	17.911	5.548	154.58
Howthen	${ }_{\text {c }}^{5.9335}$	${ }^{2} 4.1597$	+1:648	2,600	82\% 34	Howtink	${ }^{263}$	1.352	12.350	4. 1225	296.34
NEVARARMPSHIRE	1.790 964	1.362 ${ }^{2} .483$	2.085	1.859	89.07 ${ }^{89} 9$	NEVADA ${ }_{\text {NEL }}$	171	- 1.024	99.504	- 1.252	82.23   118.69   188
NEW NERSEY NEH MEXICO	9. 7962				(178.31	NEM JERSEY	- 628		97.241 12.976	- $\begin{gathered}20.731 \\ 3.069\end{gathered}$	289.00   284   17
NEH Y YoRk		- 11.546	- 4.941	35.502	307.48	NEN roRk	2.077	21,378		- 42.438	- ${ }^{\text {che }}$
NORTH CAROLINA	3.781 5.437	9,221 1.779	${ }^{6.717} 8$	${ }^{8.479}$	$\begin{array}{r}91.95 \\ 51.10 \\ \hline 1.15\end{array}$	NORTH CAROLINA	${ }^{139}$	4.547 499	20.456   8.716   8	5.541	121.86
	4.8 .976	10,930	6.018   3.266	13.724 3 3,371	${ }^{125} 5.56$	${ }_{\text {OKLIA }}^{\text {OHOMA }}$	1.599 432	${ }_{2}^{9} .9858$	17.166	${ }_{\substack{33.578 \\ 3.038}}$	397.06
OREBOM	- 4.646	5:112	3.018	4.361	${ }^{565} .33$	ORecom	403	2:866	19.484	5.000	- 174.46
PEENSYLLMANA	7.772	${ }^{18.748}$	5.8066	$\begin{array}{r}18.775 \\ \hline 39\end{array}$	112.10   12   1	PENNSYLVANIS	2.177		\% 19.502	$\begin{array}{r}24.942 \\ 2.810 \\ \hline\end{array}$	- 1700.98
solith carclina	4.968	\%.500	${ }_{\text {1. }}^{1.688}$	${ }^{8.815}$		SOUTH CAROLIMA	726   108   1	4.729		${ }_{\text {9, }}^{1.8265}$	205.47
Stentes		边	- 4.785			TENNESSEE	945	5.920		- 11.8893	
¢	14.828   $\substack{1.506 \\ 2}$	22,000	4,069	14.536 1.43 1.23	${ }^{88} 8.01$	TEXAS	1.977	18.849 820	28.12 15.42 15	-39.5177	189.94
Yerronta vironit	1504	${ }^{1} 1.592$					$\begin{array}{r}\text {. } 83 \\ 1.002 \\ \\ \hline\end{array}$	5.245	11.3888	8.4818	${ }^{1990.42}$
Hastingor	-	( 5 S.717			(1040.70	MASHHNAOON	- 6.62		(12.535		97.45 253.97
Mest viroinia		-3.751	4.867	6.167 10.843		mesionirginia	( 21.8	5.829	- 115.943	- 10.267	- 278.26
wromino	2,865	1.598	528		52.88	hromine	124	408	8.970	748	189.74
total	222.794	330.295	4.062	328.948	99.41	total	94.261	277.823	22.218	486.099	174.97
$\frac{1}{1 /}$ INCOMPLET EXTREMELY HIOH HWAY CATEOORY:	$\begin{aligned} & \text { OHASE } \\ & \hline \text { ExRRE } \end{aligned}$			$\begin{aligned} & \text { Q OiV } \\ & \text { THE O } \\ & \hline \end{aligned}$		UNDER ASSICNME GIVEN HIGHKAY 2/ NONFA	$\begin{gathered} \text { NON-FA1 } \\ \text { Sor } \\ \text { SURY } A C \end{gathered}$		$\begin{aligned} & \text { si ANo } \\ & \hline \text { ILLION } \end{aligned}$	EMil	


8Thre	A成TERIAL					STATE	COLLEETOR				
	RTBHMAY MLES	$\begin{gathered} \text { VEHLCLE } \\ \text { MLLE } \\ \text { (NILLONS ) } \end{gathered}$	```BAILY vEHICLE MILES FEG MLLE```	NONFPTALLY   INJURED PERSONS			HIOMAAY MILES	$\begin{gathered} \text { VEHICLE } \\ \text { HILES } \end{gathered}$	$\begin{gathered} \text { DAILY } \\ \text { VEHICLE } \\ \text { MILES } \\ \text { PER MILE } \\ \hline \end{gathered}$	NONFATALLY INJURED PERBONS	
				WUMPEER	RPTE 21					NUMBER	RATE 21
MMABAMM	1．548	4.899	0．860	7.074	144.57	ALPABAMA	1.253	1.877	4.104	8.095	324.72
PLASKA	133	599	12.339	1.975	329.72	ALASKA	104	1.77	2.028	301	390.91
AREZONA	1．745	10.719	18，829	31.616	294.94	MRIZONA	720	993	3.779	1.102	110.98
ARKANSA8	861	2．014	8.484	3.442	170.90	9RKANSAS	908	288	2.382	． 369	134.96
CALIFORNIG	12．786	83.828	87.813	183.717	198.95	CALIFORNSA	5.081	7.717	4.161	22.176	287.37
col ofand	1.604	5.289	9.034	13.738	259.75	COLORADO	626	437	1.913	722	165.22
CONNECTIEUY	1.235	4.475	9．927	13.180	294.52	CONNECTICUT	1.721	2.329	3.708	4.877	209.40
DELAMARE	189	998	16,741 12,960	1.776 2.519	178.21 598.34	DELANARE	156	317	6．567	660	178.86
FLORIOA	8.025	16.475	12，960	64.953	339.55	FLorida	2.740	6．065	6.126 6.064	2.382 104	738.75 1.71
OEORGIA	2.188	7.788	9.748	16.917	217.27	GEORGIA	\＄．802	3.677	5.590	B．480	176.23
HPMAII	143	875	16.764	2.878	328.91	MAWAI I	179	487	7.454	1.153	236.76
T0AHO	474	1.267	7.323	2.488	196.21	10 HHO	275	228	2.271	340	149.12
PLLInOIS	3.564	16.208	12.859	35.679	220.13	ILLINOIS	9.106	8.605	5.826	13.535	204.92
INOIANA	8.952 8.483	8.918 2.478	8.270 4.578	14.363 4.884		1NDIANA	1.777 968	$\begin{array}{r}1.638 \\ \hline 588 \\ \hline 1\end{array}$	2.522 1,864	2.715 1.387	165.95 235.88
TANSAB	$\underline{1.168}$	3.566	0.451	8.082	226．64	KANSAS	500	399	1．864	1.382	145.86
mentuckr	1.215	4.577	10.321	10.415	227.51	KENTUCKY	805	1．455	4.952	2，508	172.37
COUISIPNA	1.369	6.544	11.095	12.405	223.76	LOUISIANA	792	1.021	9，532	291	28.50
MaIme	34.4	1．099	8.745	2.729	248.54	MAINE	362	381	2.884	878	230.45
gampllama	1.477	8.284	15.366	25.235	304.62	MARYLANU	686	1．480	5，911	4.727	319.39
NASSACMUSETP昜	3，335	10.133	8.324	27.026	266.71	MASSACHUSETTS	2.570	2，783	2.967	9.983	358.71
MICHIGAN	4.125	19.213	12.741	42.481	221.11	AICHIOAR	790	1.404	4．869	8.364	595.73
MINAESOTA	1.725	8．586	10．460	11.504	174.67	MINNESOTA	670	579	2.368	1.236	213.47
MISSISSIPP迷	969	2.364	6.754	5.187	219.42	MISSISSIPPI	761	020	2.952	2.020	246.34
MISSOUR1	8.891	8.777	12.716	15．625	180.30	Missourd	585	790	3.700	1.439	182.15
MONTANA	242	605	6.849	7647	106.94	MONTANA	101	64	2.279	229	261.90
MEDRASKM	857	1.940	8.090	7.317	377.16	NEBRASKA	405	484	3.274	1.579	326.24
MEYADN	456	2.867	17．225	9．673	337.39	NEVAOA	101	208	5.642	445	214.42
NEH HPNPSMYME	386	1.173	0，926	2.077	177.07	NEH HAMPSHIRE	337	325	2.642	647	199.08
MEH JERSEY	9，554	12.921	9.961	64.745	501.08	WEW JERSEY	1．825	2.930	4.399	12．730	434.47
MEW MEXICO	475	2.381	13．618	8.677	282.80	NEH MEXICO	135	252	5.114	828	326.57
MEH YORK	5.184	25.228	13．385	68.570	271.80	NEH YORK	3．566	5.659	4.34 B	7.636	134.94
HORTH CAROL ${ }^{\text {WNm }}$	2.766	10.522	10.422	14.442	137.26	NORTH CARDL INA	363	418	3.155	488	116.75
NORTH OAKOTA	288	． 464	4.414	883	177.37	NORTH DAKOTA	213	175	2.251	297	169.71
OH 10	3.718	13.794	10.165	59.703	432.82	OHIO	4.133	6.793	4.503	25.417	374－16
OKLAHOMA	2.242	7.188	8.784	12.288	270.95	OKL AHOMA	755	． 762	2.765	1.109	145.54
OREGON	1.208	3．410	7.934	10.267	301.08	OREEON	846	1.182	3.828	2.458	207.95
PENNSYLYANLA	3.855	13.947	． 9.912	25.156	180.37	PENNGYLVANIF	3.193	4.924	$4 \cdot 225$	3，695	79.10
RHODE IBLPAD	832	1.780 2.805	11.289 11.293	4.374 8.658	245.73 332.36	RHODE ISLPMD SOUTH CRROLINA	501	［．573	3.139 5.301	1，019	177.84 0.10
SOUTH CAROLIMA SOUTH BAROTA	8382	2.805 456	11.293	8.658 1.489	332.36 325.22	SOUTH CAROLINA SOUTH DAROTA	537 102	1.039 84	5.301 2.258	$190^{1}$	0.10 226.19
TERNESSEE	1.353	8，715	13．597	17．171	255.71	TENNESSEE	1．025	2，421	3.634	5.701	235.48
TEXAS	8.876	25.888	10.541	37.206	144.85	TEXAS	1.611	1.824	3.102	200	10.96
UTAH	540	3.831	15．885	B． 771	280.13	UTAH	390	998	7.011	2，025	202.91
VERMONT	171	． 88	7．498	775	165.60	VERHONT	178	172	2.647	296	172.09
VIRGIAIA	$8.64 \%$	10.626	1.7 .730	22.283	209.51	VIROINIA	1.404	2.142	4.180	4.600	214.75
WASt IMOTON	8.497	9.940	10.905	14.080	141.73	WASHINGTON	1．738	2.490	3.925	4.169	187.43
MEST VIROIMAM	407	1.495	9．880	4．01588	289.34	WEST VIROINIA	402	503	3.428	551	109.54
Hiscomsin	2.160	8.593	\％． 248	14.367	220.93	HISCONSIN	795	645	2.223	1．959	303.72
WYONIWO	234	392	4.494	617	157.40	WYOHINO	323	290	1.951	318	138.26
TOFRL	92．629	402.832	11.915	948.308	235.41	TOTAL	55.258	82.050	4.068	175.095	213.40
LI INCUMPLE RATES ARE EXTREDEL OIVEN HEGMAY CATE	CTA WERE OH DR 10 Y：OTHER	pORTEO BY A AS A RESUL TREME RATES	MUHEER OF OF MINIMAL APPEAR TO	TATES： 301 ILEROE IN SULT FROA		DVER RND UMDER A PERSONS TO OIVEN 2／NONFATA	ONHENT OF OHmar 8YS nujury acc	NON－FATRL TEMS．   IDENT8 PER	NJURY ACEI	NTS RND EHICLE M	RED

# TABLE 6-D. NONFATALLY INJURED PERSONS BY STATE AND HIGHWAY SYSTEM - 1991 

FEDERAL-AID SECONDARY SYSTEM

STATE	MAJOR COLLECTOR							
	HIGHWAY MILES	VEHICLE MILES (MILLIONS)	$\begin{gathered} \text { DAILY } \\ \text { VEHICLE } \\ \text { MILES } \\ \text { PER MILE } \end{gathered}$	NONFATALLY   INJURED PERSONS				
				NUMBER	RATE 2/			
RLABAMA	11.648	4.488	1.056	2.851	63.52			
ALASKA	1.802	428	651	635	148.36			
ARIZONA	3.238	2.871	2.429	2.268	79.00			
RRKANSAS	7.389	2.120	786	2.016	95.08			
CALIFORNIA	11.192	10.309	2.524	9,794	95.00			
COLORADO	3.427	1.322	1.057	1.446	109.38			
CONNECTICUT	879 604	1.378 629	4.295 2.853	$\begin{array}{r}1.646 \\ \hline 598\end{array}$	119.45 95.07			
DIST: DF COL.			2.85		- 0			
FLORIDA	4.359	2.961	1.861	9.444	318.95			
GEORGIA	14.012	6.444	1.260	7.008	108.75			
HAWAII	435	583	3.672	712	122.13			
IDAHO	4.182	1.153	. 755	1.068	92.63			
ILLINOIS	12.942	4,305	911	5,531	128.48			
INDIANA	9.759	8.363	2.348	7.502	89.70			
IOWA	13.576	2.575	520 325	3.105	120.58			
KANSAS	22.643	2.687	+325	2.445 8.403	90.99 163.23			
KENTUCKY	7.226 7.329	5.148 5.412	1.952 2.023	8.403 9.023	163.23 166.72			
MAINE	7.329 2.742	1.783	1.782	9.023 1.617	166.72 90.69			
MARYLAND	1.922	2.373	3,383	3.521	148.38			
MASSACHUSETTS	2.007	1,637	2.235	3.045	186.01			
MICHIGAN	17.080	10.859	1.742	18.840	173.50			
MINNESOTR	18.650	3.698	608	3.171	85.75			
MISSISSIPPI	11.699	3.514	823	2.691 6.570	76.58 120.53			
MONTANA	4.737	5.451 632	866	6.599	+94.78			
NEBRASKA	11.456	1.277	305	1.547	121.14			
NEVADR	2.314	915	1.083	686	74.97			
NEW MAMPSHIRE	1.235	1.250	2.773	1,173	93.84			
NEW JERSEY	1.703	2.557	4.114	5.925	231.72			
NEW MEXICO	3.645	1.228	923	1.297	105.62			
NEW YORK	6.296	5.589	2.432	20.395	364.91			
NORTH DAKOTA	10.596	11.476	3.021	14.2420	124.12			
OHIO	11.790	9.240	2.147	17.235	186.53			
OKLAHOMA	18.775	3.994	929	2.215	55.46			
OREGON	7.781	2.632	927	2.526	95.97			
PENNSYLVANIA	7.992	6.177	2.118	8.408	136.12			
RHODE ISLAND	- 201	5158	2.154	- 172	108.86			
SOUTH CAROLINA	8.536	5.085	1.632	6.309	124.07			
TENNESSEE	11.091	3.223	1.629	6994 4.926	74.78 152.84			
TEXAS	32,705	13.931	1.167	15.314	109.93			
UTAH	2.724	864	869	918	106.25			
VERMONT	1.913	1.079	1.545	823	85.54			
VIRGINIA	10.206	6.677	1.792	8.878	132.96			
HRSHINGTON	7.376	5.253	1.951	12.865	244.91			
HEST VIRGINIA	6.353	3.483	1.502	8.095	232.41			
WYOMING	+2.264	4.625 499	972 604	5.2572	113.66 76.55			
total	400.315	185.966	1.273	256.351	137.85			
$1 /$ INCOMPLETE ORTA WERE REPORTED BY A NUMBER OF STATES: SOME RATES RRE EXTREMELY HIGH OR LOW AS A RESULT OF MINIMAL MILEAGE IN A GIVEN HIGHWAY CATEGORY: OTHER EXTREME RATES APPEAR TO RESULT FRDH THE OVER AND UNDER ASSIGNHENT OF NON-FATAL INJURY RCCIDENTS RND INJURED PERSONS TO GIVEN HIGHWRY SYSTEMS.   2) NONFATAL INJURY RCCIDENTS PER 100 MILLION VEHICLE MILES.								


STATE	RURAL					STATE	URBAN										
	HIbraway MILES		DAILY   VEHICLE MILES PER MILE	NOMFATALLY   INJURED PERSONS			HIOHWAY MILES	$\begin{gathered} \text { VEHICLE } \\ \text { MILES } \\ \text { (MILLIONS I } \end{gathered}$	$\begin{aligned} & \text { OAILY } \\ & \text { VEHICLE } \\ & \text { MILES } \\ & \text { PER MILE } \end{aligned}$	NONF RTRLLY INJUREQ PERSONS							
				NUMBER	RATE 2/					NUMBER	RATE 2/						
PLPBAMA	$\cdots$				$-$	PLABAMA											
PLASSKA	8	17	5.822	- 0	47.06	RL.ASKA	216	215 49	2.727 12.204	252	117.21 369.39						
RRIZOMA	-	$\cdots$		-		ARIZONA	63	240	10.437	132	369.39 55.00						
ARKANSAS	360	308	2.344	193	62.66	ARKANSAS	398	466	3.208	933	200.21						
CAL IFORNIA	16	29	4.966	25	86.21	CAL IFORNIA	1.243	3.303	7.280	8,589	260.04						
COLORADO	26	1	105	0	0.00	COLORADO	- 8	8	2.740	. 67	837.50						
CONNECTICUT	9	1	304	28	2,800.00	CONNECTICUT	34	68	5.479	283	416.18						
OELAAMRE	$\cdots$	-	-	-	*	DELAWARE	1	13	35.616	4	30.77						
DIST OF COL. FLORIOA	352	409	-987	-387		DIST. OF COL.	${ }^{8}$	4	1.370	241	6.025 .00						
OEORGIA	5	409	80.96	387	98.44	GEORGIA	374	2.420	17.728	2.581	106.65						
HAMAII	10		274	0	0.00	HAWPII	-	-	-	-	-						
IDAHO	1		8.219	0	0.00	IDAHO	47	118	6.878	80	67.80						
ILLINOIS	$\cdots$	-	- 370	-	-	ILLINOIS	32	39	3.339	220	564.10						
INDIANA	2	1	1.370	0	0.00	INDIANA	19	63	9.084	465	738.09						
IONR	3	1	913	0	0.00	IONA	14	29	5.675	0	0.00						
KENTUCKY	- 31	6	530	$-0$	$\overline{0.00}$	KRNSAS	216	659	8.359	2.518	382.09						
LOUISIANA	10	4	1.096	0	0.00	LDUISIANA	291	621	5,847	762	122.71						
MAINE	1		8.219	0	0.00	MAINE	2	5	6.849	16	320.00						
MRRYLRND	-	-			-	MRRYLAND	11	23	5.729	32	139.13						
MASSACHUSETTS		-	-	$\cdots$	--	MASSACHUSETTS	3	1	913		700.00						
MICHIOAN	-	-	"	-	-	MICHIGAN	672	2.473	10.082	2.014	81.44						
MINNESOTA	- 27	- 105	1.031	4	$-$	MINNESDTA	27	16	1.624	224	1.400 .00						
MISSISSIPPI	279	105	1.031	74	70.48	MISSISSIPPI	14	20	3.914	47	235.00						
MISSOURT	-63	- 4	- 174	- 0	-0,	MISSOURI	503	1.291	7.032	3,643	282.18						
MONTANR NEBRASKR	-63	- 4	-174	-0	0.00	MONTANA	37	- 27	1.999	220	814.61						
NEVADR	-	-	-	-	-	NEVADA	- 21	- 46	6.001	133	289.13						
NEW HRMPSHIRE	21	234	30.528	21	8.97	NEW HAMPSHIRE	26	187	19.705	36	19.25						
NEN JERSEY	124	1.504	33.230	999	66.42	NEW JERSEY	286	3.646	34.927	3,515	96.41						
NEH MEXICO			548	0	0.00	NEW MEXICD	92	320	9.529	1.156	361.25						
NEW YORK	- 257	-		-	-	NEW YORK	129	762	16.183	0	0.00						
NORTH CAROLINA	257	158	1.684	122	77.22	NORTH CAROLINA	820	1.939	6.478	1.323	68.23						
NORTH DAKOTA	-2	- 1	1.370		0.00	NORTH OAKOTR		-	-	-	-						
OHIO	-	- 99		-		OHIO		-	-		-						
OKLAHOMF	282	396	3.847	69	17.42	OKLAhOMA	161	170	2.893	126	74.12						
DREGON   PENNGYIVANIA	81	115	3.890	93	80.87	OREGON	28	49	4.795	107	218.37						
RHODE ISLAND	- 3		1.826	- 0	$\overline{0.00}$	PENNSYLVANIA	-	-	-	-	-						
SOUTH CAROLINA	-	$-2$		-	-	SOUTH CAROLINA	259	$\bigcirc 440$	4.654	1.773	402.95						
SOUTH OAKOTA	-14	1	196	4	400.00	SDUTH DAKOTA	9	15	4.566	19	126.67						
TENNESSEE	- 3	- 2	1.826	- 4	2000.00	TENNESSEE	- -787	5. ${ }^{-1}$	-	-	37.70						
UTAH	39	17	1.194	3	17.65	UTAH	1.72	6.342	9.723 3.849	2.391 108	183.05						
VERMONT	-	-	-	-	-	VERMONT	-	-	-	-	-						
VIRGINIA	2,534	214	231	0	0.00	VIRGINIA		737	2.019.178	102	13.84						
HRSHINCTON	-	-	-		-	HASHINGTON	9	47	14.307	0	0.00						
WEST VIROINIA	-	-	2740	- 0	-	WEST VIRGIMIA	1	1	2.740	0	0.00						
HISCONSIN hYOMINO	253	15	2.740 162	158	$\begin{array}{r} 0.00 \\ 1.053 .33 \end{array}$	$\begin{aligned} & \text { WTSCONSIN } \\ & \text { HYOMING } \end{aligned}$	46 3	43 1	2.561 913	196	455.81 0.00						
TOTAL	4.790	4.554	2,605	3.189	70.03	TOTRL	7.966	26.977	9.278	34,496	127.87						
RATE INCOMPLETE OATA NERE REPORTED BY A NUMBER OF STRTES; SOME RATES ARE EXTREMELY HIOH OR LOH RS A RESULT OF MIMIMAL MILEAGE IN A gIVEN HIGHAAY CRTEGORY: GTHER EXTREME RATES GPPEAR TO RESULT FROM						THE DVER AND UNDER GSSIGNMENT OF NON -FATAL INJURY ACCIDENTS FND INJURED PERSONS TO GIVEN HIGHWAY SYSTEMS.   2/ NONFATAL INJURY ACCIOENTS PER 100 MILLION VEHICLE MILES.											

# TABLE 6-F. NONFATALLY INJURED PERSONS BY STATE AND HIGHWAY SYSTEM • $1991^{1}$ 

NONFEDERAL-AD COLLECTOR SYSTEM

State	RURRL					STATE	URBAN				
	highmay MILES	$\begin{gathered} \text { VEHICLE } \\ \text { MILES } \\ \text { MILLIONS } \end{gathered}$	$\begin{aligned} & \text { DAILY } \\ & \text { VEHICLE } \\ & \text { MILES } \\ & \text { PER MILE } \\ & \hline \end{aligned}$	NONFATALLY   INJURED PERSONS			HIOHHAY MILES	$\begin{gathered} \text { VEHICLE } \\ \text { MILES } \\ \text { (MILLIONS) } \end{gathered}$	DAILY VEHICLE HILES PER MILE	NONFATALLY   INJURED PERSONS	
				NUMBER	RRTE 2/					NUMEER	RATE 27
	6.976	1.120	440	900	80.36	ALABRMA	461	287	1.706	754	262.72
	6.971	- 197	556	163	92.89	ALASKA		20	1.706 1.889	359	262.72 195.00
	3.234	281	238	455	161.92	ARIZONA	930	793	2.336	941	118.66
	11.688	1.951	461	1.843	94.46	ARKANSAS	701	356	1.391	618	173.60
	11.602	4.245 1.780	1.002 306	4.700 2.155	110.72	CALIFORNIA	2.700	3.729	3.784	10.663	285.95
	15.954 1.199	1.780 .615	1.306 1.405	2.155	121.07 130.24	COLORRDO	533 193	662 184	3.403 2.612	1.381 410	208.61 222.83
	156	80	1.405	115	143.75	DELRWARE	13	25	5.269	31	124.00
		2		6. 078	294. 67	DIST. OF COL.	. 12	${ }^{3}$	685	68	2.266 .67
	5.496 7.258	2.062 2.086	$\begin{array}{r}1.028 \\ \hline 780\end{array}$	6.078 1.319	294.67 63.84	FLORIDA	2:146	3,554	4.537	3	0.08
	136	190	3.828		32.11	HAWHII	1		2.740		0.00
	4.754	314	-181	174	55.41	IDAMO	147	133	2.479	70	52.63
	4.856	1.414	798	1.684	119.09	ILLINOIS	198	195	2.698	425	217.95
	10.287	1.923	512	3.232	168.07	1NOIANA	173	104	1.647	499	479.81
	16.390 9.393	750 304	125	1.225	163.33	104A	81	62	2.097	0	0.00
	9.360	2.198	643	3.921	178.55	KENTUCKY	271	$\begin{array}{r}439 \\ \hline 19\end{array}$	4.438	692	134.85 0.00
	4.304	1.452	924	2.152	148.21	LOUISIPNA	350	248	1.941	63	25.40
	2.787	1.038	1.020	1.106	106.55	MAINE	32	32	2.740	40	125.00
	1.880	782	1.140	1.301	166.37	MARYLAND	485	591	3.339	1.189	201.18
	1.951	+ 414	581	1.197	269.13	MASSACHUSETTS	156	111	1.949	218	194.59
	11.676	1.068	251	3.644	201.77	MINNESDTA	( 662	698 2.023	2.640 4.473	3.804	178.57
	2.917	386	363	221	57.25	MISSISSIPPI	1.2	2.023	1.370	3.00	10.00
	5,444	412	207	562	136.41	MISSOURI	895	999	3.058	2.595	259.76
	11.093	467	115	968	20.56	HONTANA	127	101	2.179	35	34.65
	9.231 2.467	286 218	85 242	507 212	177.27	NEBRASKA NEVABA					77
	2.461 1.232	429	- 954	418	97.25 97.44	NEVADA ${ }_{\text {NEW HPMPSHIRE }}$	335	399 3	3.263 2.055	1.104	276.69 0.00
	1,300	977	2.059	1.994	204.09	NEH JERSEY	96	117	2.055	287	245.30
	2.875	392	374	. 453	115.56	NEH MEXICO	169	259	4.199	1.276	492.66
	10.833	5.455	1.380	10.237	334.32	NEW YORK	364	874	6.236	672	76.89
	9.237 7.959	3.878	1.150	6.347	163.67	NORTH CAROLIMA	1.014	804	2.172	474	58.96
	7.959	2.265	872	5.017	79.26 221.50	NORTH DAKOTA OHIO	- 13	2	421	2	100.00
	12.725	1.216	262	345	28.37	OKLAHOMA	450	312	1.900	452	144.87
	9.208	. 903	263	478	52.93	OREGON	131	110	2.301	137	124.55
	8.371	2.804	918	4.543	162.02	PENNSYLYANIA	131	1.0	2.301	137	124.5
	4.006	659	1.164	765	69.23 117.33	RHODE ISLAND		432	1897		210
	4.006 7.388	852	468 64	765 169	117.33 98.83	SOUTH CAROLINA SOUTH DAKOTA	624	432	1,897	910	210.65
	10.797	2.459	624	3.524	143.31	TENAESSEE					-
	24.204 4.615	3.296	373	2.287	69.39	TEXAS	5.284	5.852	3.034	92	1.57
	+:889	180	499	153	100.00 85.00	UTAM	82	- 49	1.637	- 18	240.82
	3.410	521	419	996	179.65	VIRGINIA	186		29		0.00
	8.541	1.759	737	4.817	273.65	WASHINGTON	40	62	4.247	0	0.00
	2.171	. 349	440	717	205.44	NEST VIRGINIA	-2	1	1.370	0	0.00
	7.227 7.681	1.063 438	403	$\begin{array}{r}1.737 \\ \hline 295\end{array}$	163.41 67.66	HISCONSIN WYOHING	559	616	3.019 2.740	1.880	305.19 0.00
	330.933	59.641	494	94.780	158.92	TOTRL	22.025	25.222	3.137	31.783	126.01
1 I InCOMPLETE DATA here aEported oy f number of states: sohe rates ARE EXTREKELY HIGH OR LOH AS A RESULT OF MINIMAL MILEAGE IN A GIVEN hiOHMY CATEDORYI DTHER EXTREHE RATES APPEAR TO RESULT FROM THE OVER AND						UNDER RSSIGNHENT DF NDN-FATAL INJURY RCCIDENTS AND INJURED PERSONS TO GIVEN HIGHHAY SYSTEMS.   $2 /$ NONFATAL INJURY ACCIDENTS PER 100 MILLION VEHICLE MILES.					

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{state} \& \multicolumn{5}{|l|}{RURAL} \& \multirow[t]{3}{*}{state} \& \multicolumn{5}{|l|}{URBAN} \\
\hline \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& \text { HROHMAY } \\
\& \text { MILES }
\end{aligned}
\]} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& \text { VEHICLE } \\
\& \text { MILES } \\
\& \text { MILLIONS }
\end{aligned}
\]} \& \multirow[t]{2}{*}{DAILY VEHICLE MILES PER MILE} \& \multicolumn{2}{|l|}{monfrtally Indured persons} \& \& \multirow[t]{2}{*}{MIGHMAY
MILES} \& \multirow[t]{2}{*}{\[
\begin{gathered}
\text { VEHICLE } \\
\text { MILES }
\end{gathered}
\]} \& \multirow[t]{2}{*}{\[
\begin{gathered}
\text { DAILY } \\
\text { VEHICE } \\
\text { MILES } \\
\text { PER MILE }
\end{gathered}
\]} \& \multicolumn{2}{|l|}{\begin{tabular}{l}
NONFATALLY \\
IMJURED PERSONS
\end{tabular}} \\
\hline \& \& \& \& NUABER \& Rate 2/ \& \& \& \& \& NUMBER \& RATE 21 \\
\hline RLabama \& 48.888 \& 3.910 \& 220 \& 3.903 \& 99.82 \& ALABAMM \& 12.263 \& \& \& \& \\
\hline ALASKA \& 7.195 \& 489 \& 179
155 \& 287 \& 61.19 \& RLASKA \& 12.263 \& 4.668 \& 1.0487 \& \(\begin{array}{r}6.138 \\ \hline 743\end{array}\) \& 131.45
221.19 \\
\hline ARIZONA \& 30.388
40.984 \& 1.718
1.18 \& 155 \& 2.785 \& 162.11
75.11 \& RRIZONA
ARKANSAS \& 10.323
6.817 \& 9.392 \& 900 \& 5.110 \& 150.65 \\
\hline CALIFDRAIA \& 57.308 \& 2.912 \& 115 \& 4.039 \& 167.41 \& CALIFORNIA \& 50.478 \& 14.213 \& 771 \& 45.123 \& 287.73 \\
\hline colormod \& 42.517 \& 534 \& 34 \& 1.593 \& 298.31 \& COLORADO \& 7.785 \& 1.636 \& 576 \& 2.442 \& 149.27 \\
\hline CONNECTICUT \& 5.252 \& 980 \& 421 \& 8.270 \& 132.29 \& connecticut \& 8.967 \& 1.721 \& 677 \& 6.012 \& 291.29 \\
\hline DELPNARE \& 2.776 \& 486 \& 480 \& 749 \& 160.73 \& DELAmRRE \& 1.161 \& 743 \& 1.753 \& 620 \& 83.45 \\
\hline FLORIOA \& 44.658 \& 3.269 \& 200 \& 20.497 \& 628.94 \& FLORİA \& 37.749 \& 20.282 \& 1.488
1.472 \& 41.167 \& 330.59
206.06 \\
\hline oeprola \& 57.688 \& 4.503 \& 214 \& 6.154 \& 136.66 \& geargia \& 16.124 \& 7,200 \& 1.225 \& 14.578 \& 202.22 \\
\hline HPMAI: \& 1.619 \& 659 \& .115 \& 835 \& 96.38 \& HAWAII \& 1.025 \& 1.029 \& 2.750 \& 1.552 \& 150.83 \\
\hline IDPHO \& 47.332 \& 1.970 \& 114 \& 1.709 \& 86.75 \& IDAHO \& 1.635 \& 437 \& 732 \& 1.157 \& 264.76 \\
\hline Lndimas \& 78.987
48.960 \& 3.482
2.520 \& 124 \& 5.992
8.018 \& 172.06
318.17 \& blicheis \& 22.626
11.955 \& 7.052
4.330 \& 854 \& 28.177 \& 399.56 \\
\hline 10 HP \& 85.085 \& 1.463 \& 62 \& 4.419 \& 302.05 \& IOMA \& 5.407 \& 1.055 \& 535 \& 2.503 \& 278.80
237 \\
\hline KANSAB \& 83.904 \& 1.571 \& 51 \& 2.517 \& 160.22 \& KANSAS \& 8.489 \& 1.713 \& 725 \& 9.320 \& 193.81 \\
\hline KENTUCKY \& 41.467 \& 2.566 \& 170 \& 4.997 \& 194.74 \& KENTUCKY \& 4.922 \& 1.745 \& 971 \& 4.555 \& 261.03 \\
\hline Louisiama \& 31.307 \& 2.436 \& 213 \& 8.593 \& 352.75 \& Louisiama \& 8.800 \& 1.976 \& 815 \& 11.167 \& 585.13 \\
\hline MAINELAMD \& 12.277 \& 1.002

1.325 \& 224 \& 1.828 \& 182.48
200.91 \& MAINE \& 1.520 \& 240 \& 433 \& ${ }^{682}$ \& 284.17 <br>
\hline PASSACHUSETTS \& 8,167 \& 1.043 \& 350 \& 3.288 \& 313.33 \& MASSACHUSETTS \& 13.357 \& 5.317 \& 1.091 \& 17.6895 \& 575.19
332.61 <br>
\hline MICHIORA \& 53,081 \& 2.600 \& 121 \& 7.101 \& 273.12 \& MICHIGAN \& 19.087 \& 5.689 \& 1.017 \& 16.781 \& 294.97 <br>
\hline MinNesota \& 76.988 \& $2 \cdot 445$ \& 87 \& 4.097 \& 167 . 57 \& MINNESOTA \& 10.261 \& 2.721 \& 727 \& 4.829 \& 170.12 <br>
\hline Mississipp \& 44.287 \& 3.959 \& 245 \& 3.197 \& 80.75 \& MISSISSIPPI \& 5.156 \& 1.785 \& 948 \& 3.231 \& 101.01 <br>
\hline Missour \& 75.207 \& 3.408 \& 124 \& 14.356 \& 333.22 \& missouri \& 10.274 \& 2.477 \& 661 \& 5.043 \& 235.89 <br>
\hline MOMTANA \& 46.104
59.541 \& 724
1.252 \& 43
58 \& \& 54.97
188.82 \& MONTAMA \& 1.618 \& 650 \& 1.101 \& 3.280 \& 504.62 <br>
\hline MEVAOA \& 35.352 \& 1.305 \& 24 \& 2. 364 \& 188.82
110.16 \& NEEVADSA \& 3.599
2.126 \& 707
599 \& 538 \& 1.142 \& 246.39 <br>
\hline NEH HAMPSHIRE \& 80,903 \& 544 \& 169 \& 1.352 \& 248.53 \& NEW HAMPSHIRE \& 8.472 \& 258 \& 480 \& 1.405 \& 156.98 <br>
\hline NEM JERSEY \& 7.712 \& 940 \& 334 \& 3.425 \& 364.36 \& NEH JERSEY \& 15,799 \& 10.692 \& 1.854 \& 17.899 \& 157.41 <br>
\hline NEH MEXICO \& 39,314 \& 2.272 \& 158 \& 2.071 \& 91.15 \& MEH MEXICO \& 4.477 \& 1.169 \& 715 \& 3.135 \& 268.18 <br>
\hline NEN YORT \& 48.984 \& 3.429 \& 192 \& 31.186 \& 309.48 \& NEE YORK \& 26.099 \& 8.221 \& 863 \& 42.110 \& $512 \cdot 22$ <br>
\hline NOPTM CARKTA \& 51.285
60.290 \& 3.988 \& 31 \& $\begin{array}{r}27.168 \\ \hline 308\end{array}$ \& 8000.00 \& MORTH CAROLINA
MORTH DAKOTA \& 13.749 \& 7.354 \& . 465 \& 31.410 \& 427.11 <br>
\hline OHIO \& 57.448 \& 8.151 \& 293 \& 13.357 \& 217.15 \& OHIO \& 21.220 \& 10.359 \& 1.337 \& 28.734 \& 258.07 <br>
\hline OKLAMEMA \& 69.463 \& 1.084 \& 78 \& 4.733 \& 251.22 \& OKL.Ahoma \& 8.170 \& 3.349 \& 1.123 \& 6.701 \& 200.09 <br>
\hline OREGGM \& 64.641 \& 1.538 \& 65 \& 988 \& 63.02 \& OREGON \& 6.610 \& 1.278 \& 530 \& 2.231 \& 174.57 <br>
\hline PESNSYLYANIA \& 62.9898 \& 5.502 \& 239 \& 10,385 \& 188.75 \& PEENSSYLVAMIA \& 18.751 \& 5.899 \& 861 \& 28.267 \& 479.67 <br>
\hline RHODE 1SLAND \& ${ }^{9682}$ \& \& 175 \& 4.729 \& 125.93 \& RHOOE LSLAND \& 3.344 \& 828 \& 678 \& ${ }^{813}$ \& 98.19 <br>
\hline SOUTH DRKKIA \& 58.597 \& 2.197 \& 165
27 \& 4.729 \& 215.25
155.64 \& SOUTH DAKOTA \& ${ }_{1}^{6.455}$ \& 709 \& 301
622 \& 3.578 \& 507.48 <br>
\hline TEMESSEE \& 47.098 \& 1.850 \& 96 \& 4.919 \& 298.12 \& fenmessee \& 11.071 \& 3.275 \& 810 \& 9.531 \& 291.02 <br>
\hline TEXAS \& 143.270 \& 4.148 \& 79 \& 19,237 \& 463.99 \& TEXAS \& 57.937 \& 21.363 \& 1.010 \& 104.342 \& 488.42 <br>
\hline YTAFH \& 28.847 \& 520 \& 59 \& 1.021 \& 196.35 \& UTAM \& 4.322 \& 1.693 \& 1.073 \& 2.445 \& 144.42 <br>
\hline VERMONT \& 8.711 \& $\begin{array}{r}479 \\ \hline\end{array}$ \& 158 \& 595 \& 124.22 \& YERMONT \& 730 \& 371 \& 1.392 \& 184 \& 44.20 <br>
\hline YRSHINGTON \& ${ }^{34.1802}$ \& 3.257 \& 251 \& 4.169
8.438 \& 128.62 \& VIRGINIA \& 10.875 \& 5.522 \& 1.391 \& 6.475 \& 117.26 <br>
\hline mest yiroimia \& 20.500 \& -964 \& 129 \& 2.208 \& 229.05 \& WEST VIRGIMIA \& 11.972 \& 3.446 \& 820 \& 9.287 \& 283.00
84.35 <br>
\hline WISCOMSIN \& 66.682 \& 2.395 \& 99 \& 5.912 \& 246.85 \& Hisconsim \& 9,867 \& 5,152 \& 1.431 \& 4,884 \& 94.60 <br>
\hline wromimo \& 22.814 \& 340 \& 4. \& 312 \& 91.76 \& hroming \& 1.236 \& 161 \& 357 \& 425 \& 263.98 <br>
\hline rotal \& 2.146.926 \& 98.154 \& 125 \& 262.908 \& 267.85 \& TOTAL \& 526.122 \& 188,365 \& 981 \& 657.477 \& 295.96 <br>

\hline \multicolumn{12}{|l|}{| ngi/ imcomplete dhta here reported by a number df states: some |
| :--- |
|  |
| oyer and under assignhent of non-fatal injury accidents amd PERSONS TO OIVEN MIOHKAY SYSTEHS. |
| 2f honfatal injury accidents per 100 million vehicle hit |} <br>

\hline
\end{tabular}

${ }^{\text {sfare }}$	rabl					tate	urban				
	Hapmar $^{\text {mize }}$	$\begin{gathered} \text { VEHCLEE } \\ \text { CHILLESES } \end{gathered}$						$\begin{gathered} \text { VEHIILE } \\ \text { (MILLISNS } \end{gathered}$		In Moverar	
				минв	RATE 21					NUnBER	Rate 2
	？ 11			16．192	919 ${ }_{96}^{71.72}$		${ }^{15}$	20．0370	3．305	${ }_{\text {25：399 }}$	
		积：602							coin		
	91．694	－	${ }_{\text {che }}^{\text {1．} 695}$							coin	－
comer	${ }^{\text {a }}$	citis		¢，	${ }_{965}^{95} 9.38$	Conecticut	10：664	19：969	\％：776	55：037	1765：154
		332．904	1：963	¢59，059	${ }_{1}^{1654.29}$			－3．430		（13．543	（194．94
		cis			－			cois			cins：20
－	（104．0．0	\％e9．929	（1．097			（indent					－
			－		为			cititisi		cose	
（kEsivick	cistion		${ }^{1.924}$		＋121．49	（kesfick		（14．302	coich	－${ }_{\text {a }}^{\text {ani }}$	－1765．91
	16：5975		ci：1988	， 18.961	（91．26			cilile	cile	51738	－
${ }^{\text {Misfuchichusetis }}$		－3．697 ${ }^{\text {3，}} 1718$	${ }^{1.799}$	－	1458：14．4．4	（Hassachusetis	${ }^{2610.775}$	\％37：840		cil	（188．64
${ }_{\text {Min }}$	\％ 19.64	－ 11.5 .588	213		772：03		114，7360		cose		－ 1378.389
		24．976		－${ }^{22} 3.723$	（1090：20		－15．033		－	40，422	
	－ 81.7878	－		${ }^{3} .6 .928$	${ }^{85} 680$	Nebrask	4．151	矿：163		$\xrightarrow{15} 5$	${ }_{\text {2550．56 }}$
NEEMAMPSHIRE	12，		， 1.380	， 19.1184	－		－${ }_{\text {22：}}^{2}$	47：542	cilitis		
NEEL MEXCO		cioter	1．183	ciotite	398：89	MEM MXXCO		${ }^{65.9576}$	5． 1.166	－	
	\％8，		（1．254	55936	－ 170.30	Noptr carolita	1．811	－ 30.026	¢， 4.203	54，979	（182：909
¢		cose	4i68			¢				cisk	
PEENSHL vanta		－39．258	1．2418	94：580		，Remo	29：336	\％18．727	－ 3.653		
－	54，${ }_{\text {54，}}^{1.72}$	22．252	（17		－677 ${ }^{\text {git }}$			－			（191．78
					－ 185		－15：776		ciele		边
		¢	，		（10．0．		come	成	cintil		
			4．9488				（16：569			－	（179．435
－Mest yriointa		11．383	${ }_{687} 8$						¢，	3：3953	${ }^{\text {citige }}$
нromine	6．71	4.640	345	${ }_{3}^{3.016}$	65.00	uroning		1：359	1：879	2．203	162．22
OTaL	8．139．435	883．621	71	1．018．513	115.27	total	749．864	1．288．593	4.708	2．415．817	187.4
	$\begin{aligned} & \text { Tita were } \\ & \hline \text { Hot opher } \end{aligned}$							$\begin{aligned} & \text {-fatrat } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Recio } \\ & \hline \end{aligned}$	Le	

## SECTION III - OTHER RATES

## A. Highway Mileage

Vehicle mileage rates for the United States are the most common measure of safety performance (Table 1). For some purposes, rates per mile of highway may be more useful (Table 7). Note that, because of the concentration of travel on highway systems with the fewest fatalities per vehicle mile, highways on these systems tend to have the highest number of fatalities per highway mile.

## B. Population

Population rates are most useful for comparing motor vehicle accidents with other public health problems. In 1990, only heart disease, cancer, and stroke were responsible for more deaths, according to the National Center for Health Statistics. State rates per thousand residents are listed in Table 8 for fatal and nonfatal injury accidents, fatalities, and nonfatally injured persons.

## C. Licensed Drivers

The number of accidents per licensed driver reflects both the care with which drivers operate their vehicles and the amount of travel under various conditions. States' accident, fatality, and injury rates per licensed driver are listed in Table 9.

## D. Registered Vehicles

As is the case with licensed drivers, the number of accidents per registered vehicle is affected both by the care with which the vehicle is driven and the amount of travel under various conditions. States' rates per registered vehicle are listed in Table 10.

TABLE 7. U.S. HIGHWAY-MILE RATES BY HIGHWAY SYSTEM - 1991¹

M10HHAYY \% \% \%	MIOABAY MLES 28	$\begin{gathered} \text { MENIELE } \\ \text { MMLEA } \\ \text { CMRLIONS } \\ 2! \\ \hline \end{gathered}$	$\begin{aligned} & \text { ORILY } \\ & \text { YEAICLE } \\ & \text { PILES } \\ & \text { PER MILE } \end{aligned}$	P月TM4 accioents		MONFATAL INJUMY ACCIDENTS 4/		FAPGLITIES		NOMFATALLY   INJURED PEREONS 4	
				munber	RATE $3 /$	NUABER	RATE 3/	NUMBER	RATE 3/	mumber	FATE 3 /
$\qquad$	$\begin{aligned} & 95.877 \\ & 11.503 \\ & 45.200 \end{aligned}$	$\begin{aligned} & 205.011 \\ & 285.325 \\ & 490.396 \end{aligned}$	$\begin{aligned} & 16.678 \\ & 67.372 \\ & 29.668 \end{aligned}$	$\begin{aligned} & 2.139 \\ & 1.729 \\ & 3.868 \\ & \hline \end{aligned}$	$\begin{array}{r} 63.52 \\ 149.01 \\ 85.42 \end{array}$	$\begin{array}{r} 43.806 \\ 117.131 \\ 160.937 \\ \hline \end{array}$	$\begin{array}{r} 1.300 .77 \\ 10.094 .89 \\ 3.554 .26 \\ \hline \end{array}$	6.564   1.908   4.472	$\begin{array}{r} 76.14 \\ 164.64 \\ 98.76 \end{array}$	$\begin{array}{r} 72.939 \\ 182.581 \\ 255.600 \end{array}$	$\begin{array}{r} 2.165 .04 \\ 15.733 .95 \\ 6.642 .67 \\ \hline \end{array}$
DTMER FEDENAL -AIO   primary (prteriali) RURAL   LIRBAM TOTME	$\begin{array}{r} 222.794 \\ 34.261 \\ 257.055 \\ \hline \end{array}$	$\begin{aligned} & 330.295 \\ & 277.823 \\ & 808.118 \end{aligned}$	$\begin{array}{r} 4.052 \\ 22.216 \\ 6.481 \end{array}$	$\begin{array}{r} 7.756 \\ 3.530 \\ 11.286 \\ \hline \end{array}$	$\begin{array}{r} 34.81 \\ 103.03 \\ 43.91 \end{array}$	$\begin{array}{r} 192.423 \\ 297.725 \\ 490.148 \end{array}$	$\begin{array}{r} 863.68 \\ 8.689 .91 \\ 1.906 .78 \\ \hline \end{array}$	$\begin{array}{r} 9.248 \\ 3.869 \\ 13.117 \end{array}$	$\begin{array}{r} 41.51 \\ 112.93 \\ 51.03 \end{array}$	$\begin{aligned} & 328.346 \\ & 486.099 \\ & 814.445 \end{aligned}$	$\begin{array}{r} 1.473 .77 \\ 14.188 .11 \\ 3.168 .37 \end{array}$
$\begin{aligned} & \text { FEDERRL-AID UREAN } \\ & \text { ARTERIAL } \\ & \text { CORLECTIR } \\ & \text { TOTAL IRLL UREAH? } \end{aligned}$	$\begin{array}{r} 92.629 \\ 55.258 \\ 147.897 \\ \hline \end{array}$	$\begin{array}{r} 402.831 \\ 82.050 \\ 864: 881 \end{array}$	$\begin{array}{r} 11.915 \\ 4.068 \\ 0.983 \end{array}$	$\begin{aligned} & 6.005 \\ & 1.010 \\ & 7.015 \end{aligned}$	$\begin{aligned} & 64.83 \\ & 18.28 \\ & 47.43 \\ & \hline \end{aligned}$	$\begin{aligned} & 609.879 \\ & 118.340 \\ & 728.219 \end{aligned}$	$\begin{aligned} & 6.584 .10 \\ & 2.141 .59 \\ & 4.924 .16 \\ & \hline \end{aligned}$	6.480 1.077 7.557	69.98 19.49 51.10	$\begin{array}{r} 946.306 \\ 175.095 \\ 1.123 .401 \\ \hline \end{array}$	$\begin{array}{r} 10.237 .68 \\ 3.169 .68 \\ 7.596 .35 \\ \hline \end{array}$
FEDERTL-AID SECOADARY (COLECTOR) TOTAL (ALL RURALI	400.315	165.965	1.273	5.363	13.40	163.230	407.75	6.120	15.29	256,351	640.37
NOA-FEOERML-AID arterial KURAL URBRW TOTAL	$\begin{array}{r} 4.790 \\ 7.986 \\ 12.756 \end{array}$	$\begin{array}{r} 4.554 \\ 26.977 \\ 31.531 \end{array}$	$\begin{aligned} & 2.805 \\ & 9.278 \\ & 6.772 \end{aligned}$	$\begin{array}{r}988 \\ 237 \\ 335 \\ \hline\end{array}$	$\begin{aligned} & 20.46 \\ & 29.75 \\ & 26.26 \end{aligned}$	$\begin{array}{r} 1.792 \\ 21.049 \\ 22.841 \end{array}$	$\begin{array}{r} 374.11 \\ 2.642 .36 \\ 1.790 .61 \end{array}$	122 251 373	25.47 31.51 29.24	$\begin{array}{r} 3.189 \\ 34.498 \\ 37.685 \end{array}$	$\begin{array}{r} 665.76 \\ 4.330 .40 \\ 2.954 .30 \\ \hline \end{array}$
```HOM-FEDERAL-RID COLLECTOR RURAL URBAM T0TML```	$\begin{aligned} & 330.933 \\ & 32.025 \\ & 352.958 \end{aligned}$	$\begin{aligned} & 59.641 \\ & 25.222 \\ & 84.963 \end{aligned}$	$\begin{array}{r}494 \\ 3.197 \\ 859 \\ \hline\end{array}$	$\begin{array}{r} 1.721 \\ 185 \\ 1.906 \end{array}$	5.20 8.40 5.40	$\begin{aligned} & 63.427 \\ & 25.742 \\ & 89.169 \end{aligned}$	$\begin{array}{r} 191.66 \\ 1.168 .76 \\ 252.63 \\ \hline \end{array}$	$\begin{array}{r} 1.914 \\ 201 \\ 2.115 \\ \hline \end{array}$	5.78 9.13 5.99	$\begin{array}{r} 94.780 \\ 31.783 \\ 126.563 \end{array}$	$\begin{array}{r} 286.40 \\ 1.443 .04 \\ 358.58 \\ \hline \end{array}$
\qquad	$\begin{array}{r} 2.146 .926 \\ 525.122 \\ 2.873 .048 \end{array}$	98.154 189.365 286.519	125 981 294	4.070 3.052 7.172	1.90 $\mathbf{S . 8 0}$ $\mathbf{2 . 6 6}$	177.037 978.787 555.824	$\begin{array}{r}92.46 \\ 719.96 \\ 207.94 \\ \hline\end{array}$	4.445 3.263 7.708	2.07 6.20 2.88	$\begin{aligned} & 262.908 \\ & 557.477 \\ & 920.385 \\ & \hline \end{aligned}$	$\begin{array}{r}122.46 \\ 1.059 .60 \\ 306.91 \\ \hline\end{array}$
ALL FEDERML-AIO RURFL URERG TOTML	$\begin{aligned} & 656.76 \% \\ & 193.758 \\ & 650.537 \end{aligned}$	$\begin{array}{r} 721.272 \\ 8.0 .48 .029 \\ i .769 .301 \\ \hline \end{array}$	$\begin{array}{r} 3.009 \\ 14.820 \\ 5.899 \end{array}$	$\begin{aligned} & 15.256 \\ & 12.274 \\ & 27.532 \\ & \hline \end{aligned}$	$\begin{aligned} & 23.23 \\ & 63.35 \\ & 32.37 \\ & \hline \end{aligned}$	$\begin{array}{r} 399.459 \\ 1.143 .075 \\ 1.542 .534 \\ \hline \end{array}$	$\begin{array}{r} 608.20 \\ 5.899 .71 \\ 1.813 .60 \\ \hline \end{array}$	$\begin{aligned} & 17.932 \\ & 13.334 \\ & 31.266 \end{aligned}$	27.30 68.82 35.76	$\begin{array}{r} 657.638 \\ 1.792 .061 \\ 2.449 .697 \\ \hline \end{array}$	$\begin{aligned} & 1.001 .29 \\ & 9.249 .30 \\ & 2.880 .18 \\ & \hline \end{aligned}$
```FLL NON-FEOENAL-R1D```	$\begin{array}{r} 2.482 .849 \\ 386.113 \\ 3.096 .762 \\ \hline \end{array}$	162.349   240.564   402.913	$\begin{array}{r}179 \\ 1.185 \\ 363 \\ \hline\end{array}$	5.889   3.474   $\mathbf{S . 3 6 3}$	2.37   6.25   3.08	$\begin{aligned} & 242.256 \\ & 425.578 \\ & 667.834 \\ & \hline \end{aligned}$	$\begin{array}{r} 97.58 \\ 765.27 \\ 219.77 \end{array}$	$\begin{array}{r}6.481 \\ 3.715 \\ 10.196 \\ \hline\end{array}$	2.51 8.68 3.36	$\begin{aligned} & 360.877 \\ & 623.756 \\ & 984.633 \\ & \hline \end{aligned}$	$\begin{array}{r} 145.36 \\ 1.121 .64 \\ 324.02 \\ \hline \end{array}$
MON- MTEAETATE RURFL URBA TOTAL	$\begin{array}{r} \mathbf{3} .105 .758 \\ 738.261 \\ \mathbf{3 . 8 4 4 . 0 1 9} \\ \hline \end{array}$	$\begin{array}{r}678.810 \\ 1.003 .268 \\ 1.681 .878 \\ \hline\end{array}$	$\begin{array}{r}599 \\ 3,723 \\ 1.199 \\ \hline\end{array}$	19.008   14.019   33.027	$\begin{array}{r}6.12 \\ 18.99 \\ 8.59 \\ \hline\end{array}$	$\begin{array}{r} 597.909 \\ \mathbf{8 . 4 5 1 . 5 2 2} \\ \mathbf{2 . 0 4 9 . 4 3 1} \\ \hline \end{array}$	$\begin{array}{r}192.52 \\ 1.966 .14 \\ \hline 33.15 \\ \hline\end{array}$	21.649 15.141 36.990	$\begin{array}{r}7.03 \\ 20.51 \\ 9.62 \\ \hline\end{array}$	$\begin{array}{r} 945.574 \\ 2.233 .256 \\ 3.178 .830 \\ \hline \end{array}$	$\begin{array}{r} 304.46 \\ 3.025 .02 \\ 826.95 \\ \hline \end{array}$
10 Mat RURAL URERM TOTAL	$\begin{array}{r} 3.139 .435 \\ 749.854 \\ 3.989 .299 \end{array}$	$\begin{array}{r} 883.621 \\ 8.288 .593 \\ 2.172 .214 \\ \hline \end{array}$	$\begin{array}{r} 771 \\ 4.708 \\ 1.590 \\ \hline \end{array}$	21.147 15.748 36.895	8.74 21.00 9.49	$\begin{array}{r} 641.715 \\ 1.568 .653 \\ 2.210 .358 \end{array}$	$\begin{array}{r} 204.40 \\ 2.091 .92 \\ 568.32 \\ \hline \end{array}$	24.413 17.049 41.462	$\begin{array}{r} 7.78 \\ 22.74 \\ 10.66 \end{array}$	$\begin{array}{r} 1.018 .513 \\ 2.415 .817 \\ 3.434,330 \\ \hline \end{array}$	$\begin{array}{r} 324.43 \\ 3.221 .57 \\ 883.02 \\ \hline \end{array}$
1/ U.S. ESTIMATES EXELUDE TME COMRONNEALTH OF PUERTO RICO RND TME TERRITORIES OF AMERICAN SRMOA. GUAG, VIROIN ISLANDS GND NORTHERN mpriangs.   MOHIT RILEEOE AND TRAVEL DATA GRE FROH THE HLOHHAY PEGFORMANCE HPHE WIG SYSTEM (HPHS) FOR 19g! FEDERAL-AID HIOHMAY MILEROE IS FROM ARERH YERSE OATA RMO VEHICLE MILES OF TRAVEL ARE FRON THE HPMS   GREAULDE SHMHRRY TRELES. FEDERAL HIDHMAY RDMINISTRATION ESTIMATES UERE					MADE FOR MRJOR HIOHHAY CATEOORIES WHERE COMPLETE FUNCTIONAL OA FEDERAL-AID SYSTEH DATR MERE MOT FEPORTED.   3/ RATES ARE PER 100 HILLIDN HIGHWAY MILES.   I/ ESTIMATES OF NONFATALLY INJURED PERSONS VERE HADE GY FHNA BRSED   ON STATE REPORTED 1990 DATA FOR HAHRII. MICHIGAN, DHID. AND 1989 DATA for tennessee.						

## TABLE 8. FATAL AND INJURY ACCIDENT DATA

RELATED TO POPULATION - 1991

STATE	POPULATION		RATES PER THOUSAND PERSONS			
	NUHBER (THOUSANDS)	$\begin{aligned} & \text { VEHICLE } \\ & \text { HILES } \\ & \text { PER } \\ & \text { CRPITR } \end{aligned}$	$\begin{aligned} & \text { FATAL } \\ & \text { ACCIDENT } \\ & \text { RATE } \end{aligned}$	$\begin{gathered} \text { FATAL } 1 \text { TY } \\ \text { RATE } \end{gathered}$	NONFATAL INJURY RCCIDENT RATE	RONFATAL INJURY RATE
ALABAMA RLPSKA ARIZONA ARKANSAS	$\begin{array}{r} 4.089 \\ 570 \\ 3.750 \\ 2.372 \\ \hline \end{array}$	$\begin{array}{r} 10.497 \\ 7.054 \\ 9.314 \\ 9.247 \\ \hline \end{array}$	$\begin{aligned} & 0.24 \\ & 0.16 \\ & 0.19 \\ & 0.22 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.27 \\ & 0.18 \\ & 0.22 \\ & 0.26 \end{aligned}$	$\begin{aligned} & 6.85 \\ & 7.51 \\ & 9.13 \\ & 4.68 \\ & \hline \end{aligned}$	$\begin{array}{r} 10.17 \\ 11.08 \\ 14.85 \\ 8.61 \end{array}$
CRLIFORNIR COLORADO CONNECTICUT DELAWARE	$\begin{array}{r} 30.380 \\ 3.377 \\ 3.291 \\ 680 \end{array}$	$\begin{aligned} & 8.492 \\ & 8.216 \\ & 8.091 \\ & 9.884 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.14 \\ & 0.14 \\ & 0.09 \\ & 0.13 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.15 \\ & 0.16 \\ & 0.09 \\ & 0.15 \\ & \hline \end{aligned}$	7.37   7.49   8.67   7.23	$\begin{aligned} & 11.52 \\ & 11.37 \\ & 12.60 \\ & 11.54 \end{aligned}$
$\begin{aligned} & \text { DIST. OF COL. } \\ & \text { FLORIOA } \\ & \text { GEORGIA } \\ & \text { HAHAII } \\ & \hline \end{aligned}$	$\begin{array}{r}598 \\ 13.277 \\ 6.623 \\ 1.135 \\ \hline\end{array}$	$\begin{array}{r} 5.736 \\ 8.547 \\ 11.023 \\ 7.174 \\ \hline \end{array}$	$\begin{aligned} & 0.10 \\ & 0.17 \\ & 0.19 \\ & 0.10 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.11 \\ & 0.19 \\ & 0.21 \\ & 0.12 \end{aligned}$	$\begin{array}{r}15.89 \\ 9.04 \\ 9.25 \\ 7.60 \\ \hline\end{array}$	$\begin{aligned} & 22.65 \\ & 14.68 \\ & 14.65 \\ & 10.95 \\ & \hline \end{aligned}$
IDRHO   ILIINOIS   INOIRNA   IONA	$\begin{array}{r}1.039 \\ 11.543 \\ 5.610 \\ 2.795 \\ \hline\end{array}$	$\begin{aligned} & 9.931 \\ & 7.401 \\ & 9.673 \\ & 8.236 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.21 \\ & 0.11 \\ & 0.16 \\ & 0.15 \\ & \hline \end{aligned}$	0.25   0.13   0.18   0.17	6.25 8.58 8.40 7.17	$\begin{aligned} & 10.04 \\ & 12.61 \\ & 12.35 \\ & 10.44 \\ & \hline \end{aligned}$
KANSAS KENTUCKY LOUISIANA HAINE	$\begin{aligned} & 2.495 \\ & 3.713 \\ & 4.252 \\ & 1.235 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.293 \\ & 9.484 \\ & 8.163 \\ & 9.594 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.14 \\ & 0.19 \\ & 0.18 \\ & 0.15 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.16 \\ & 0.22 \\ & 0.20 \\ & 0.17 \\ & \hline \end{aligned}$	7.63   8.88   9.53   8.78	$\begin{aligned} & 11.49 \\ & 13.66 \\ & 15.93 \\ & 12.71 \\ & \hline \end{aligned}$
MARYLRND MASSACHUSETTS HICHIGRN hinnesota	$\begin{array}{r}4.860 \\ 5.996 \\ 9.368 \\ 4.432 \\ \hline\end{array}$	$\begin{aligned} & 8.508 \\ & 7.761 \\ & 8.746 \\ & 8.857 \\ & \hline \end{aligned}$	0.13 0.09 0.14 0.11	0.14   0.09   0.15   0.12	$\begin{array}{r} 9.22 \\ 11.12 \\ 9.49 \\ 6.52 \\ \hline \end{array}$	15.31 14.01 15.10 9.65
$\begin{aligned} & \text { HISSIS5IPPI } \\ & \text { MISSOURI } \\ & \text { HONTANA } \\ & \text { NEBRASKA } \end{aligned}$	$\begin{array}{r} 2.592 \\ 5.158 \\ 1.808 \\ 1.593 \\ \hline \end{array}$	$\begin{array}{r} 9,605 \\ 9,884 \\ 10,290 \\ 8,848 \end{array}$	$\begin{aligned} & 0.23 \\ & 0.18 \\ & 0.21 \\ & 0.15 \end{aligned}$	0.27 0.20 0.25 0.17	5.47 8.51 6.82 9.80	$\begin{aligned} & 10.39 \\ & 13.12 \\ & 10.46 \\ & 14.37 \\ & \hline \end{aligned}$
neymar   NEH HAMPSHIRE   MEH JERSEY   NEH MEXICO	1.284   1.105   1.760   1.548	$\begin{array}{r} 8.185 \\ 8.991 \\ 7.640 \\ 10.835 \\ \hline \end{array}$	0.20   0.12   0.10   0.27	0.17 0.13 0.10 0.30	$\begin{array}{r} 9.36 \\ 5.89 \\ 11.77 \\ 10.30 \\ \hline \end{array}$	$\begin{array}{r} 14.27 \\ 8.73 \\ 18.58 \\ 16.22 \\ \hline \end{array}$
NEM YORK   NORTH CRRDLINA WORTH DAKOTA   OHIO	$\begin{array}{r} 18.058 \\ 6.737 \\ 635 \\ 10.939 \end{array}$	$\begin{aligned} & 6.962 \\ & 9.631 \\ & 9.372 \\ & 8.502 \\ & \hline \end{aligned}$	0.10 0.18 0.14 0.13	0.30 0.11 0.20 0.15 0.15	$\begin{array}{r} 10.48 \\ 10.43 \\ 5.25 \\ 11.39 \\ \hline \end{array}$	$\begin{array}{r} 15.52 \\ 16.96 \\ 7.77 \\ 19.24 \\ \hline \end{array}$
OXLAHOMA OREGON PENMSYLYANIA RHODE ISLAND	$\begin{array}{r} 3.175 \\ 2.922 \\ 11.961 \\ 1.004 \\ \hline \end{array}$	$\begin{array}{r} 10.784 \\ 8.817 \\ 7.297 \\ 7.124 \\ \hline \end{array}$	0.17 0.15 0.13 0.08	$\begin{aligned} & 0.21 \\ & 0.17 \\ & 0.14 \\ & 0.09 \end{aligned}$	7.59 6.86 7.10 6.87	$\begin{aligned} & 12.05 \\ & 10.66 \\ & 10.91 \\ & 10.47 \end{aligned}$
SOUTH CAROLINA   SOUTH DAKOTA   TENNESSEE $1 /$   TEXPS	$\begin{array}{r} 3.550 \\ 703 \\ 17.953 \\ 17.349 \end{array}$	$\begin{aligned} & 9.679 \\ & 9.546 \\ & 9.543 \\ & 9.151 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.22 \\ & 0.18 \\ & 0.20 \\ & 0.16 \end{aligned}$	0.25 0.20 0.22 0.18	6.11 5.87 9.45 9.31	$\begin{aligned} & 13.33 \\ & 10.40 \\ & 14.59 \\ & 15.18 \\ & \hline \end{aligned}$
UTAM   VERMONT   VIRGINIA   HASHINETON	$\begin{aligned} & 1.770 \\ & 667 \\ & 6.866 \\ & 5.018 \end{aligned}$		$\begin{aligned} & 0.13 \\ & 0.18 \\ & 0.13 \\ & 0.12 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.15 \\ & 0.19 \\ & 0.15 \\ & 0.14 \\ & \hline \end{aligned}$	7.78 5.46 7.59 9.77	$\begin{array}{r} 18.96 \\ 9.55 \\ 11.28 \\ 14.35 \\ \hline \end{array}$
MEST VIRGINIA   WISCONSIN   mYOHINE	$\begin{array}{r} 1.801 \\ 4.955 \\ 460 \\ \hline \end{array}$	$\begin{array}{r} 8.898 \\ 9.174 \\ 13.039 \\ \hline \end{array}$	0.21 0.14 0.23	$\begin{aligned} & 0.23 \\ & 0.16 \\ & 0.27 \end{aligned}$	$\begin{aligned} & 9.63 \\ & 8.26 \\ & 7.27 \\ & \hline \end{aligned}$	$\begin{aligned} & 14.75 \\ & 12.12 \\ & 11.35 \\ & \hline \end{aligned}$
U.S. TOTAL	252.181	8.614	0.15	0.16	8.77	13.62
' ESTIMATES OF NONFATAL INJURY ACCIDENTS RND NONFATALLY INJURED PERSONS HERE MADE GY FHMAGASED ON STATE REPORTED 1990 DRTR FOR HAMAII. HICHIGAN. OHIO. RND 1989 OATA FOR TENNESSEE.						

TABLE 9. FATAL AND INJURY ACCIDENT DATA
RELATED TO LICENSED DRIVERS - 1991

STATE	LICENSED DRIVERS		RATES PER THOUSAND DRIVERS			
	NUMBER   (THOUSANDS)	$\begin{aligned} & \text { VEHICLE } \\ & \text { MIEES } \\ & \text { PER } \\ & \text { ORIVER } \end{aligned}$	$\begin{aligned} & \text { FATAL } \\ & \text { ACCIDENT } \\ & \text { RATE } \end{aligned}$	$\begin{aligned} & \text { FRTALITY } \\ & \text { RRTE } \end{aligned}$	NONFATAL INJURY ACCIDENT RATE	NONFATRL INJURY RATE
alabama flaska ARIZONA RRKANSAS	$\begin{array}{r} 2.938 \\ 2.318 \\ 2.720 \\ 1.720 \end{array}$		$\begin{aligned} & 0.33 \\ & 0.28 \\ & 0.30 \\ & 0.31 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.38 \\ & 0.32 \\ & 0.34 \\ & 0.35 \\ & \hline \end{aligned}$	$\begin{array}{r} 9.53 \\ 13.47 \\ 14.26 \\ 6.45 \\ \hline \end{array}$	$\begin{aligned} & 14.15 \\ & 19.86 \\ & 23.20 \\ & 11.88 \end{aligned}$
CALIFORNIA COLORADO CONNECTICUT DELAWARE	$\begin{array}{r} 19.931 \\ 2.084 \\ 2.213 \\ 495 \end{array}$		$\begin{aligned} & 0.21 \\ & 0.23 \\ & 0.13 \\ & 0.18 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.24 \\ & 0.26 \\ & 0.14 \\ & 0.21 \end{aligned}$	$\begin{array}{r} 11.24 \\ 12.14 \\ 12.89 \\ 9.93 \end{array}$	$\begin{aligned} & 17.56 \\ & 18.43 \\ & 18.74 \\ & 15.86 \end{aligned}$
DIST. OF COL. FLORIDA georgia HAWAI I	$\begin{array}{r} 408 \\ 9.693 \\ 4.610 \\ 700 \end{array}$		$\begin{aligned} & 0.15 \\ & 0.23 \\ & 0.27 \\ & 0.17 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.16 \\ & 0.25 \\ & 0.30 \\ & 0.19 \\ & \hline \end{aligned}$	$\begin{aligned} & 33.40 \\ & 12.38 \\ & 13.29 \\ & 12.32 \end{aligned}$	$\begin{aligned} & 3.36 \\ & 20.11 \\ & 21.95 \\ & 17.75 \end{aligned}$
IDRHO   ILLINOIS   INDIANA   IOHA	712 7.360 3.453 1.857	14.492 11.607 15.716 12.396	$\begin{aligned} & 0.31 \\ & 0.18 \\ & 0.26 \\ & 0.23 \\ & \hline \end{aligned}$	0.37 0.20 0.30 0.26	9.12 13.46 13.65 10.79	$\begin{aligned} & 14.66 \\ & 19.78 \\ & 20.08 \\ & 15.72 \\ & \hline \end{aligned}$
KANSAS KENTUCKY LOUISIANA maine	$\begin{array}{r} 1.781 \\ 2.414 \\ 2.595 \\ 889 \end{array}$		$\begin{aligned} & 0.20 \\ & 0.30 \\ & 0.30 \\ & 0.20 \end{aligned}$	$\begin{aligned} & 0.23 \\ & 0.34 \\ & 0.33 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 10.69 \\ & 13.65 \\ & 15.82 \\ & 12.19 \end{aligned}$	$\begin{aligned} & \begin{array}{l} 6.10 \\ 210.01 \\ 26.11 \\ 17.66 \end{array} \end{aligned}$
MARYLAND MASSACHUSETTS HICHIGAN Minnesota	3.214 4.206 6.434 2.546		$\begin{aligned} & 0.20 \\ & 0.12 \\ & 0.20 \\ & 0.18 \end{aligned}$	0.22 0.13 0.22 0.21	$\begin{aligned} & 13.94 \\ & 15.85 \\ & 13.81 \\ & 11.35 \end{aligned}$	$\begin{aligned} & 23.15 \\ & 19.97 \\ & 21.98 \\ & 16.79 \end{aligned}$
$\qquad$	$\begin{array}{r} 1.925 \\ 3.732 \\ 580 \\ 1.069 \end{array}$	$\begin{aligned} & 12.934 \\ & 13.861 \\ & 14.334 \\ & 13.185 \end{aligned}$	$\begin{aligned} & 0.31 \\ & 0.24 \\ & 0.30 \\ & 0.23 \end{aligned}$	0.35 0.27 0.34 0.26	$\begin{array}{r} 7.36 \\ 11.77 \\ 9.51 \\ 14.30 \\ \hline \end{array}$	$\begin{aligned} & 13.99 \\ & 18.14 \\ & 14.57 \\ & 21.41 \end{aligned}$
NEVADA   NEH HAMPSHIRE NEW JERSEY NEH MEXICO	909 848 5.660 1.081		$\begin{aligned} & 0.29 \\ & 0.16 \\ & 0.13 \\ & 0.39 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.33 \\ & 0.17 \\ & 0.14 \\ & 0.43 \\ & \hline \end{aligned}$	$\begin{array}{r} 13.23 \\ 7.68 \\ 16.13 \\ 14.74 \end{array}$	$\begin{aligned} & 20.16 \\ & 11.38 \\ & 25.48 \\ & 23.23 \end{aligned}$
NEW YORK NORTH CAROL INA NORTH OAKOTA OHIO $1 / 2$		$\begin{aligned} & 10.486 \\ & 14.269 \\ & 13.969 \\ & 12.450 \end{aligned}$	0.18 0.27 0.20 0.19	0.20 0.30 0.22 0.22	$\begin{aligned} & 18.44 \\ & 15.46 \\ & 7.82 \\ & 16.67 \end{aligned}$	$\begin{aligned} & 27.30 \\ & 25.13 \\ & 11.58 \\ & 28.17 \end{aligned}$
oKLAMOMA OREGOH PENNSYLVANIR RHODE ISLRND	$\begin{array}{r} 2.283 \\ 2.374 \\ 7.951 \\ 876 \end{array}$	$\begin{aligned} & 14,998 \\ & 10.852 \\ & 10.977 \\ & 10.580 \end{aligned}$	$\begin{aligned} & 0.24 \\ & 0.18 \\ & 0.19 \\ & 0.12 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.29 \\ & 0.20 \\ & 0.21 \\ & 0.13 \end{aligned}$	$\begin{array}{r} 10.55 \\ 8.44 \\ 10.89 \\ 10.20 \end{array}$	$\begin{aligned} & 16.76 \\ & 13.12 \\ & 16.41 \\ & 15.55 \end{aligned}$
SOUTH CAROLINR SOUTH GAKOTA TENNESSEE 1 TEXAS	$\begin{array}{r} 2,402 \\ 501 \\ 3.393 \\ 11,293 \end{array}$	$\begin{aligned} & 14.345 \\ & 13.395 \\ & 13.931 \\ & 14.058 \end{aligned}$	0.33 0.26 0.30 0.24	$\begin{aligned} & 0.37 \\ & 0.29 \\ & 0.33 \\ & 0.27 \end{aligned}$	$\begin{aligned} & 12.01 \\ & 9.64 \\ & 13.79 \\ & 14.30 \end{aligned}$	$\begin{aligned} & 19.76 \\ & 14.59 \\ & 21.30 \\ & 23.33 \end{aligned}$
UTAH   VERHONT   VIRGINIA   WASHINGTON	$\begin{array}{r} 1.067 \\ 412 \\ 4.651 \\ 3.491 \end{array}$	$\begin{aligned} & 14.425 \\ & 14.248 \\ & 13.137 \\ & 13.305 \end{aligned}$	$\begin{aligned} & 0.21 \\ & 0.24 \\ & 0.18 \\ & 0.17 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.27 \\ & 0.20 \\ & 0.20 \end{aligned}$	$\begin{aligned} & 12.90 \\ & 7.51 \\ & 10.25 \\ & 14.05 \end{aligned}$	$\begin{aligned} & 19.84 \\ & 11.76 \\ & 15.24 \\ & 20.83 \end{aligned}$
mest vireinia HISCONSIN HYOMING	$\begin{array}{r} 1.286 \\ 3.394 \\ 341 \end{array}$	$\begin{aligned} & 12.462 \\ & 13.394 \\ & 17.589 \end{aligned}$	$\begin{aligned} & 0.29 \\ & 0.20 \\ & 0.30 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.23 \\ & 0.36 \end{aligned}$	13.49 12.06 9.81	$\begin{aligned} & 20.65 \\ & 17.69 \\ & 15.30 \end{aligned}$
U.S. TOTAL	188.998	12.853	0.22	0.25	13.08	20.32
1 ESTIMATES OF NOMFATAL INJURY ACCIDENTS AND NONFATRLLY INJURED PERSONS WERE MADE BY FHUA BASED ON STATE REPORTED 1990 DATA FOR HAWAII. MICHIGAN. OHID, RND 1989 DATA FOR TENNESSEE.						

TABLE 10. FATAL AND INJURY ACCIDENT DATA
RELATED TO VEHICLE REGISTRATIONS - 1991

StRTE	REGISTERED VEHICLES		RATES PER THOUSAND VEHICLES			
	NUMBER   (THOUSANDS)	$\begin{gathered} \text { VEHICLE } \\ \text { MILES } \\ \text { VEHIRLE } \end{gathered}$	$\begin{aligned} & \text { FATPL } \\ & \text { RCCIDENT } \\ & \text { RATE } \end{aligned}$	$\begin{gathered} \text { FATALITY } \\ \text { RATE } \end{gathered}$	NONFATRL INJURY ACCIDENT RATE	NONFATAL INJURY RATE
ALABAMA ALASKA RRIZONA ARKANSAS	$\begin{aligned} & 3.699 \\ & 2.871 \\ & 1.480 \\ & \hline \end{aligned}$	$\begin{array}{r} 11.604 \\ 8.537 \\ 12.260 \\ 14.820 \\ \hline \end{array}$	$\begin{aligned} & 0.26 \\ & 0.19 \\ & 0.26 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.30 \\ & 0.21 \\ & 0.29 \\ & 0.41 \end{aligned}$	$\begin{array}{r} 7.57 \\ 9.09 \\ 12.02 \\ 7.50 \\ \hline \end{array}$	$\begin{aligned} & 11.24 \\ & 13.41 \\ & 19.54 \\ & 13.80 \end{aligned}$
CALIFORNIR COLORRDO CONNECTICUT DELANARE	$\begin{array}{r} 22.253 \\ 3.045 \\ 2.589 \\ 534 \\ \hline \end{array}$		$\begin{aligned} & 0.19 \\ & 0.16 \\ & 0.11 \\ & 0.17 \end{aligned}$	$\begin{aligned} & 0.21 \\ & 0.18 \\ & 0.12 \\ & 0.19 \end{aligned}$	$\begin{array}{r} 10.07 \\ 8.31 \\ 11.02 \\ 9.20 \\ \hline \end{array}$	$\begin{aligned} & 15.73 \\ & 12.61 \\ & 16.02 \\ & 14.70 \end{aligned}$
DIST. OF CDL. FLORIDA georgia HAWAII	246 9.980 5.714 785		$\begin{aligned} & 0.24 \\ & 0.22 \\ & 0.21 \\ & 0.15 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.26 \\ & 0.25 \\ & 0.24 \\ & 0.17 \end{aligned}$	$\begin{aligned} & 38.63 \\ & 12.03 \\ & 10.72 \\ & 10.99 \\ & \hline \end{aligned}$	$\begin{aligned} & 55.05 \\ & 19.53 \\ & 16.98 \\ & 15.83 \end{aligned}$
$\begin{aligned} & \text { IDAHO } \\ & 1 \text { ILLINOIS } \\ & \text { INDIANA } \\ & \text { IOHA } \end{aligned}$	1.055 8.193 4.414 2.688	$\begin{array}{r} 9.780 \\ 10.427 \\ 12.294 \\ 8.628 \end{array}$	$\begin{aligned} & 0.21 \\ & 0.16 \\ & 0.20 \\ & 0.16 \end{aligned}$	0.25 0.18 0.23 0.18	6.15 12.09 10.68 7.51	9.89 17.77 15.70 10.94
KRNSAS KENTUCKY LOUISIANA MAINE	$\begin{array}{r} 1.879 \\ 2.963 \\ 3.046 \\ 979 \\ \hline \end{array}$		$\begin{aligned} & 0.19 \\ & 0.24 \\ & 0.26 \\ & 0.18 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.22 \\ & 0.28 \\ & 0.28 \\ & 0.21 \\ & \hline \end{aligned}$	$\begin{aligned} & 10.13 \\ & 11.12 \\ & 13.31 \\ & 11.07 \\ & \hline \end{aligned}$	$\begin{aligned} & 15.26 \\ & 17.11 \\ & 22.24 \\ & 16.04 \\ & \hline \end{aligned}$
MARYLAND MASSACHUSETTS MICHIGAN MINNESOTR	3.630 3.664 7.245 3.273		0.17 0.14 0.18 0.14	$\begin{aligned} & 0.19 \\ & 0.15 \\ & 0.19 \\ & 0.16 \\ & \hline \end{aligned}$	$\begin{array}{r} 12.34 \\ 18.19 \\ 12.27 \\ 8.83 \\ \hline \end{array}$	$\begin{aligned} & 20.50 \\ & 22.93 \\ & 19.52 \\ & 13.06 \\ & \hline \end{aligned}$
MISSISSIPPI mISSOURI hONTANA   MEBRASKA	$\begin{aligned} & 1.887 \\ & 3.950 \\ & 1.766 \\ & 1.404 \end{aligned}$		0.31 0.23 0.22 0.17	0.37 0.26 0.26 0.20	$\begin{array}{r} 7.51 \\ 11.12 \\ 7.20 \\ 10.89 \end{array}$	$\begin{aligned} & 14.27 \\ & 17.14 \\ & 11.03 \\ & 16.30 \end{aligned}$
NEVADA   NEW HAMPSHIRE   NEW JERSEY   NEW MEXICO	$\begin{array}{r} 881 \\ 906 \\ 5.519 \\ 1.320 \\ \hline \end{array}$	$\begin{aligned} & 11.930 \\ & 10.966 \\ & 10.743 \\ & 12.707 \end{aligned}$	$\begin{aligned} & 0.30 \\ & 0.15 \\ & 0.13 \\ & 0.32 \end{aligned}$	$\begin{aligned} & 0.34 \\ & 0.16 \\ & 0.14 \\ & 0.36 \end{aligned}$	$\begin{array}{r} 13.65 \\ 7.19 \\ 16.54 \\ 12.07 \\ \hline \end{array}$	$\begin{aligned} & 20.80 \\ & 10.65 \\ & 26.13 \\ & 19.02 \end{aligned}$
NEW YORK MORTH CAROLINA NORTH DAKOTA OHIO O	$\begin{aligned} & 9.771 \\ & 5.216 \\ & 629 \\ & 8.685 \\ & \hline \end{aligned}$	11.018 12.439   9,461 10,708	$\begin{aligned} & 0.19 \\ & 0.23 \\ & 0.14 \\ & 0.17 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.21 \\ & 0.26 \\ & 0.15 \\ & 0.19 \\ & \hline \end{aligned}$	$\begin{array}{r} 19.37 \\ 13.48 \\ 5.30 \\ 14.34 \end{array}$	$\begin{array}{r} 28.69 \\ 21.91 \\ 7.85 \\ 24.23 \\ \hline \end{array}$
OKLAHOMA OREGON PENNSYLVANIR RHODE ISLAND	2.669 2.507 8.038 628		$\begin{aligned} & 0.21 \\ & 0.17 \\ & 0.19 \\ & 0.13 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.24 \\ & 0.19 \\ & 0.21 \\ & 0.14 \\ & \hline \end{aligned}$	$\begin{array}{r} 9.03 \\ 7.99 \\ 10.57 \\ 10.98 \end{array}$	$\begin{aligned} & 14.33 \\ & 12.42 \\ & 16.23 \\ & 16.74 \end{aligned}$
SOUTH CAROLINA SOUTH OAKOTA   TENNESSEE 1/   TEXAS			$\begin{aligned} & 0.32 \\ & 0.19 \\ & 0.22 \\ & 0.21 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.36 \\ & 0.20 \\ & 0.25 \\ & 0.24 \\ & \hline \end{aligned}$	$\begin{array}{r} 11.68 \\ 8.88 \\ 10.30 \\ 12.72 \\ \hline \end{array}$	$\begin{aligned} & 19.21 \\ & 10.41 \\ & 15.91 \\ & 20.75 \\ & \hline \end{aligned}$
Uтан VERMONT virginia WASHINGTON	$\begin{array}{r} 1.230 \\ 447 \\ 5.022 \\ 4.04 \end{array}$		$\begin{aligned} & 0.19 \\ & 0.22 \\ & 0.17 \\ & 0.14 \\ & \hline \end{aligned}$	0.22 0.25 0.19 0.15	$\begin{array}{r} 11.19 \\ 6.92 \\ 9.50 \\ 11.14 \\ \hline \end{array}$	$\begin{aligned} & 17.21 \\ & 10.84 \\ & 14.12 \\ & 16.35 \\ & \hline \end{aligned}$
HEST VIRGINIA MISCONSIN HYOMING	$\begin{array}{r} 1.273 \\ 3.685 \\ 469 \end{array}$	$\begin{aligned} & 12.589 \\ & 12.336 \\ & 12.789 \end{aligned}$	$\begin{aligned} & 0.29 \\ & 0.18 \\ & 0.22 \end{aligned}$	$\begin{aligned} & 0.33 \\ & 0.22 \\ & 0.26 \end{aligned}$	$\begin{array}{r} 13.62 \\ 11.10 \\ 7.13 \end{array}$	$\begin{aligned} & 20.86 \\ & 16.30 \\ & 11.13 \end{aligned}$
U.S. TOTAL	188.372	11.532	0.20	0.22	11.73	18.23
BRSED $1 /$ ESTIMATES OF NONFATAL INJURY ACCIDENTS AND NONFATALLY INJURED PERSONS WERE MADE BY FHHA BASED ON STATE REPORTED 1990 DATA FOR HANAII. MICHIGAN. OHIO. AND 1989 DATA FOR TENNESSEE.						

## SECTION IV - PUERTO RICO AND U.S. TERRITORIES

Table 11 contains the travel and accident data reported by Puerto Rico for calendar year 1991.

TABLE 11. FATAL AND INJURY ACCIDENTS IN PUERTO RICO - 1991

HIGHWAY SYSTEM	HIGHWAY Miles	VEHICLE   MLES   (MILLIONS)	INJURY ACCIDENTS				PERSONS INJURED			
			FATAL		NONFATAL		FATAL		NONFATAL	
			Number	Rate*	Number	Rato *	Number	Rate*	Number	Rate ${ }^{\text {- }}$
FEDERAL-AID										
Interstate (Rurel)	83	754	25	3.32	1,600	212.20	27	3.58	2,950	391.25
Interstate (Urban)	115	2,331	58	2.49	3,178	136.34	65	2.79	2,187	93.82
Other Primary (Rupal)	306	1,035	52	5.02	3,033	293.04	57	5.51	5,316	513.62
Other Primary (U'ban)	217	2,042	12	0.59	673	32.96	13	0.64	2,440	119.49
Urban Arterial (Urban)	420	2,206	16	0.73	524	23.75	18	0.82	2,321	105.21
Urban Collector (Urban)	181	577	22	3.81	1,248	216.29	22	3.81	1,926	333.80
Secondary (Rural)	855	888	53	5.97	3,732	420.27	58	6.53	5,726	644.82
All Faderat-Aid	2,177	9,833	238	2.42	13,988	142.26	260	2.64	22,866	232.54
NON-FEDERAL-AID										
Arteriai (Rurel)	-	-	-	-	-	-	-	-	-	-
Arterial (Urben)	55	174	0	0.00	336	193.10	0	0.00	751	431.61
Coflector (Rurel)	679	548	24	4.38	1.693	308.94	27	4.93	2,621	478.28
Collector (Urben)	295	564	3	0.53	1.024	181.56	3	0.53	1,890	335.11
Locel (Rural)	6,989	619	64	10.34	4,657	752.34	65	10.50	6.542	1056.87
Local (Urban)	3.291	1.120	68	6.07	4,755	424.55	71	6.34	6,957	621.16
All Non-Federal-Aid	11,309	3,025	159	5.26	12,465	412.07	166	5.49	18,761	620.20
All Rural Highways	8.912	3,844	218	5.67	14,715	382.80	234	6.09	23,155	602.37
All Urban Highways	4,574	9,014	179	1.99	11.738	130.22	192	2.13	18,472	204.93
TOTAL	13,486	12,858	397	3.09	26,453	205.73	426	3.31	41,627	323.74
- Per 100 Million Vehicle-Miles										

## SECTION V - RELATIONSHIP OF FATALITY RATES TO TRAVEL DENSITY

The vehicle mile fatality rate is the measure most commonly used for comparing the safety of different highway systems or the safety of highways in different States. A State often judges its own performance by comparing its fatality rates with the national fatality rate. The primary reason for differences in fatality rates appears to be variation in travel density over which the States have little control. Because the travel density varies widely among the States, it should not be expected that all States will have similar fatality rates. There are many reasons other than variation in travel density for differences among the fatality rates of the States. It is difficult to quantify these reasons well enough to develop reliable definitions of relationships between fatality rates and specific features.

The general characteristics of the relationship between fatality rates and travel density were described in Section I. Curves illustrating provisional rate-density relationships have been derived from reported data for the 4-year period from 1987 through 1990. The relationships must be regarded as provisional because they are based on data which are incomplete and known to contain errors. Despite their flaws, the curves provide a more suitable base than the national fatality rate for evaluating State rates. A curve describing the provisional rate-density relationship for all highways in the States is shown in Figure 7-A1.

In comparing State fatality rates a second consideration should be taken into account. Even if the risk (probability) of traffic fatalities were dependent only on travel density, rates would vary at random from those on the rate-density curve. Accidents and related rates are "random" in a statistical sense. Any attempt to drive a vehicle a given distance may or may not result in an accident. There is, nonetheless, a degree of statistical regularity which permits reasonably reliable estimation of the number of accidents expected from a large number of attempts. To speak of accidents as random events is not to say that accidents are unrelated to driving hazards or driver skill. The random variation of fatality rates is larger when the volume of traffic is small. For example, a random variation of 10 percent would be much more likely to occur in the Delaware fatality rate than in fatality rates for California or New York.

The random variation of fatality rates is somewhat analogous to the random variation observed when flipping a coin repeatedly. If the probability of "heads" is 1 in 2, the ratio of the number of heads to the number of flips approaches $1 / 2$ as the number of flips increases. Similarly, if the probability that a fatality will result from an attempt to drive one vehicle mile is 3 in 100 million, the ratio of fatalities to vehicle miles will approach $3 /(100$ million) as the number of vehicle miles increases. While the number of vehicle miles or flips of a coin is increasing, ratios vary at random. The amount of variation can be computed by applying the binomial probability law for the appropriate number of vehicle miles or flips. Approximations of the binomial law are commonly used to simplify computation.

The application of the binomial probability law to accident rates yields results that approximate observed experience. This procedure is widely used by the States to identify hazardous sections of highway. It does not give precise results primarily because the probability of a fatality (or other event of interest) is not the same for every attempt that is made to drive a vehicle mile without an accident.

The rate-density curve in Figure 7-A1 is an exponential curve fitted to the data points by a weighted least squares procedure. Each data point is defined by a State fatality rate and travel density for the 4 -year period. The point is weighted in proportion to the vehicle miles of travel in the State during those 4 years.

Because the volume of travel is different for each State, the magnitude of random variation is also different. To illustrate the effect of the differences, provisional ranges have been computed (Figure 7-A2). For each State, the observed 1991 fatality rate is shown along with a provisional range centered upon a value taken from the rate density curve in Figure 7-A1. If variations from rates on the rate-density curve in Figure 7-A1 followed a binomial distribution, the probability would be 99 out of 100 that each observed rate would fall within the provisional range shown in Figure 7-A2. Conversely, the chances would be only 1 in 100 that an observed rate would fall outside the provisional range if the risk were the same in 1991 as in the preceding 4 years and variation from the rate-density curve were random. If a rate falls above or below the range shown, it is likely that it is unusually high or low for some reason other than random variation. Figure 7-A2 shows that most State fatality rates varied significantly from the provisional rate-density curve. The 1991 fatality rates were about the same for California and Vermont. Yet, Vermont's rate was substantially lower than State rates observed for a similar travel density in the preceding 4 -year period. California's rate, on the other hand, is within the provisional range, where deviation from the rate-density curve is less significant. Analysis of the possible reasons for the low rate in Vermont and the rates outside provisional ranges in many other States is beyond the scope of this report. In Figure 7-A2, States are arranged in order of travel density to facilitate comparison of States with similar travel densities; the State with the most vehicle miles per mile of highway (i.e., the highest average daily traffic) is at the top.

Figures 7-B1, 7-B2a, and 7-B2b, show the rural and urban fatality rates for each State separately and in the same manner as the information in Figures 7-A1 and 7-A2.

Other provisional range relationships, as well as provisional rate changes and observed fatality rates for the highway systems in each State, are shown in Figures 7-C1a through 7-F2b. Provisional range relationships are shown for the Interstate urban and rural systems separately.

For every system, most fatality rates observed in 1991 were rarely above the provisional range based on 1987 through 1990 experience (Figure 7).

## USING RATE-DENSITY RELATIONSHIPS

Rate-density curves may be regarded as sets of provisional national norms for fatality rates. Figure 7-A1 on page 60 shows the rate-density curve for all roads in the United States.

For a particular State, the value of the provisional national norm depends on the daily number of vehicle miles per mile of highway-or average daily traffic (ADT) in that State. For a State with a daily average of 2,000 vehicle miles of travel per mile of highway, Figure 7-A1 indicates that a normal fatality rate would be slightly under 2.5 fatalities per 100 million vehicle miles.

Some random deviation of State rates from provisional national norms is expected. Most of this random deviation would fall within provisional ranges such as those shown in Figure 7-A2 on page 61. Differences in the width of provisional ranges reflect differences in volumes of travel; ranges are widest in the States with the least travel. When State rates fall above or below the provisional ranges, the deviation from the provisional national norm is likely to be caused by something other than random variation. Possible causes include effective safety programs, hazardous highways, inconsistent data, and many other contributing factors.

Figure 7 may be used to answer questions such as:

1. Where are successful safety programs most likely found?

Those States where the 1991 fatality rate is to the left of the provisional range are most likely to have successful safety programs. See Figures 7-A2, 7-B2, etc.
2. Are safety programs in a particular state more likely to have been successful on some systems than on others?

Safety programs are more likely to have been successful on those highway systems where the 1991 fatality rate is to the left of the provisional range. See Figures 7-C2, 7-D2, etc.
3. Where, in a particular State, is the greatest potential for improvement of safety programs likely to be found?

The greatest potential for reduction of traffic deaths in a State is likely to be on those highway systems where the 1991 fatality rate is to the right of the provisional range. See Figures 7-C2, 7-D2, etc.


Fig. 7-A1. PROVISIONAL RATE-DENSITY RELATIONSHIP (1987-90) ALL HIGHWAYS

FATALTTIES PER 100 MILLION VEHICLE MILES


Figure 7-A2 FATALITY RATE BY STATE - ALL HIGHWAYS (1991)


FATALTIES PER 100 MILLION VEHICLE MILES


Figure 7-B2a FATALITY RATE BY STATE - ALL RURAL HIGHWAYS (1991)


Figure 7-B2b FATAUTY RATE BY STATE - ALL URBAN HIGHWAYS (1991)


Fig. 7-Cla. PROVISIONAL RATE-DENSITY RELATIONSHIP (1987-90) INTERSTATE SYSTEM



Fig. 7-C1c. PROVISIONAL RATE-DENSITY RELATIONSHIP (1987-90) URBAN INTERSTATE SYSTEM


Figure 7-C2a FATALITY RATE BY STATE - RURAL INTERSTATE HIGHWAYS (1991)


Figure 7-C2b FATALITY RATE BY STATE - URBAN INTERSTATE HIGHWAYS (1991)


Fig. 7-D1. PROVISIONAL RATE-DENSITY RELATIONSHIP (1987-90) OTHER FEDERAL-AID PRIMARY HIGHWAYS


Flgure 7-D2a FATALITY RATE BY STATE - OTHER RURAL FEDERAL-AID PRIMARY HIGHWAYS (1991)


Figure 7-D2b FATALITY RATE BY STATE - OTHER URBAN FEDERAL-AID PRIMARY HIGHWAYS (1991)


Fig. 7-E1. PROVISIONAL RATE-DENSITY RELATIONSHIP (1987-90) FEDERAL-AID SECONDARY AND URBAN SYSTEMS

FATALITIES PER 100 MILLJON VEHICLE MILES


Figure 7-E2a FATALITY RATE BY STATE - FEDERAL-AID SECONDARY HIGHWAYS (1991)

FATALTTIES PER 100 MILUON VEHICLE MILES


Figure 7-E2b FATALITY RATE BY STATE - FEDERAL-AID URBAN SYSTEM HIGHWAYS (1991)


Fig. 7-F1. PROVISIONAL RATE-DENSITY RELATIONSHIP (1987-90) NONFEDERAL-AID HIGHWAYS

FATALITIES PER 100 MILLION VEHICLE MILES


Figure 7-F2a FATALTY RATE BY STATE - RURAL NONFEDERAL-AID HIGHWAYS (1991)

FATALITIES PER 100 MILLION VEHICLE MILES


Figure 7-F2b FATALITY RATE BY STATE - URBAN NONFEDERAL-AID HIGHWAYS (1991)

## SECTION VI - STATE FATALITY RATE TRENDS

It is sometimes more useful to know the trend within a State than to know how that State compares with others. Figure 8 illustrates changes in State rates over the 5 -year period from 1987 through 1991. The provisional range for each of the 5 years is based on the provisional rate-density curve for the 4-year period preceding each year. This is a change from the way the provisional ranges were presented in this series of reports for Figure 8 siflee the 1982-1987 reports.

Figure 8 is designed to show, within each State, the pattern of observed rates over the 5 -year period and the relationship of observed rates to provisional ranges. It is not intended that Figure 8 be used to compare the magnitude of fatality rates in different States.

While Kansas demonstrates decreasing fatality rates throughout the 5-year period, others report little improvement since 1987. In more than half the States, the rate reported for 1991 is lower than the rates for the preceding year. There were six States which had a 1991 fatality rate above the provisional range. By comparison, the lowest number occurred in 1985 when the number of States was five.

Figure 8 may be used to answer questions such as:

1. Are the fatality rates in a State improving?

Most States show steadily improving fatality rates; a few do not. See pages 80-90.
2. How have fatality rates in a particular State compared with those in the rest of the United States over the past 5 years?

For any year in a selected State, a fatality rate to the left of the provisional range indicates that the State fatality rate is significantly below the 1987-1991 national experience for States with similar travel density. A fatality rate to the right of the provisional range is significantly above such national experience. See pages 80-90.

FATALTIES PER 100 MILLION VEHICLE MILES

## Alabama



Alaska

	3	4	5
1987		:	
1988		:	
1989			
1990			
1991			

Artzona

	0	1	2	3
1987				
1988				
1989				
1980				
1991				

Arkansas

Aransas	0	1	2	3
4987				
1988				
1989				
1990				
1991 . . . . .				

## California



Figure 8 STATE FATALITY RATES (1987-1991)

Colorado

$\begin{array}{llll}0 & 1 & 2 & 3\end{array}$
1987
1988
1989
1890
1991


Delaware


3
1987
1988
1989
1990
1991

District of Columbia

1987
1988
1909
1890
1991
0

Florida


Figure 8 (continued) STATE FATALITY RATES (1987-1991)

## Georgia

Georgia
$1987 \ldots \ldots \ldots$
$1988 \ldots \ldots \ldots \ldots$
$1089 \ldots \ldots \ldots \ldots$
$1800 \ldots \ldots \ldots \ldots$
$1991 \ldots \ldots \ldots \ldots$

Hawail


Idaho

0	1	2	3

1987
1988
1989
1990
1991


Illinois


Indiana


Figure 8 (continued) STATE FATALITY RATES (1987-1991)
lowa


Kansas


4

5
Kentucky


Louisiana

	0	1	2	3	4
1987				$\vdots$	$\vdots$
1988			.	$\vdots$	:
1989				$\vdots$	$\vdots$
1980				-	:
1891					$\therefore$

Maine


Figure 8 (continued) STATE FATALITY RATES (1987-1991)

Maryland


Massachusetts


Michigan


Minnesota


Figure 8 (continued) STATE FATALITY RATES (1987-1991)

Missouri


Montana


1987
1988
1989
1990
1991

Nebraska

	0	1	2	3
1987				
1988 .				
1989 ...				
1990.				
1991				

Nevada


Now Hampshive


Figure 8 (continued) STATE FATALITY RATES (1987-1991)

## New Jersey



4


Figure 8 (continued) STATE FATALITY RATES (1987-1991)

Ohio


Ohlahoma


4

4


Pennsylvania

0	1	2

1987
1988
1989
1990
1991


Rhode Island


Figure 8 (continued) STATE FATALITY RATES (1987-1991)

## South Carolina

	0	1	2	3
1987				
1988				
1989				
1990				
1991				

South Dakota


4

1987
1988
1989
1990
1991
0 T
$1 \quad 2$
3
4

Texas

	0	1	2	3
1987				
1988				
1989				
1990		-	1	
1991				

Figure 8 (continued) STATE FATALITY RATES (1987-1991)

Vermont


Virginia


Washington

0	1	2	3	4
1987...			:	,
1988 ..............				
1989 . . . . . . .				:
1990 .			-	:
1891 . . . . . . .				

West Virginia


Wisconsin


Figure 8 (continued) STATE FATALITY RATES (1987-1991)

## FATALITIES PER 100 MILLION VEHICLE MILES

Wyoming						
	0	1	2	3	4	5
1987						
1988						
1889						
1990						
1991						

Figure 8 (comtinued) STATE FATALITY RATES (1987-1991)

## SECTION VII - SUMMARY

This report presents data which can be used in the evaluation of the highway safety performance of the States. The data were submitted by the States through the Highway Performance Monitoring System operated by the FHWA.

Table 1 contains travel and accident data by highway system for the United States. It is a summary of the detailed data contained in Tables 2 through 6.

The traffic accident statistics for 1991 show a decrease of about 3,000 fatalities from 1990. The overall fatality rate per 100 million vehicle miles of travel was 1.91, which was lower than the record low of 2.07 set in 1990.

## REFERENCES

## Rate-Density Relationships:

Chatfield, Benjamin V., "Fatal Accidents and Travel Density," Highway Research Record 469, pp. 40-51, 1973.

Smith, R.N., "Predictive Parameters for Accident Rates," California Division of Highways, Analytical Studies Branch, 1973.

National Highway Traffic Safety Administration, "Highway Safety Needs Study - 1981 Update of 1976 Report to Congress," October 1981, DOT-HS-806 283, pp. 72-73.

Fee, Julie Anna, et al., "Interstate System Accident Research Study 1," Federal Highway Administration, U.S. Department of Transportation, October 1970, pp. 1-14, 15, 42.

Provisional Rates:

Morin, D.A., "Application of Statistical Concepts to Accident Data," Highway Research Record 188, 1967, pp. 72-79.


[^0]:    ${ }^{1}$ Federal Highway Administration/National Highway Traffic Safety Administration; "Highway Fatality Counting Rule"; Federal Register, Volume 43, No. 191; pp. 45486-45488; October 2, 1978.

[^1]:    
    1989 data for tennessee.

[^2]:    $1 /$ fatal accidents per 100 Million vehicle miles.

[^3]:    $1 /$ FRTRL bccioents per 100 fillion vehicle miles.

